开学活动
搜索
    上传资料 赚现金

    难点详解沪教版七年级数学第二学期第十四章三角形达标测试练习题

    难点详解沪教版七年级数学第二学期第十四章三角形达标测试练习题第1页
    难点详解沪教版七年级数学第二学期第十四章三角形达标测试练习题第2页
    难点详解沪教版七年级数学第二学期第十四章三角形达标测试练习题第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习,共35页。试卷主要包含了如图,点A等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )

    A.2 B.3 C.4 D.7
    2、根据下列已知条件,不能画出唯一的是( )
    A.,, B.,,
    C.,, D.,,
    3、如图,,点E在线段AB上,,则的度数为(  )

    A.20° B.25° C.30° D.40°
    4、如图,,于点,与交于点,若,则等于( )

    A.20° B.50° C.70° D.110°
    5、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )

    A.110° B.70° C.55° D.35°
    6、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )

    A. B.
    C. D.
    7、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,,,添加下列条件不能判定的是( )

    A. B. C. D.
    8、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为( )

    A.12 B.10 C.8 D.6
    9、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
    A.10 B.8 C.7 D.4
    10、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为(  )

    A.15° B.20° C.25° D.30°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为__.

    2、如图,在中,,交BC的延长线于点E,若,点C是BE中点,则______°.

    3、如图,在等边三角形中,,是边的高线,延长至点,使,则BE的长为__________.

    4、如图,方格纸中是9个完全相同的正方形,则∠1+∠2的值为 _____.

    5、如图,AB,CD相交于点O,,请你补充一个条件,使得,你补充的条件是______.

    三、解答题(10小题,每小题5分,共计50分)
    1、阅读填空,将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC内),如图①所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究∠ABP与∠ACP是否存在某种数量关系.

    (1)特例探索:
    若∠A=50°,则∠PBC+∠PCB= 度,∠ABP+∠ACP= 度.
    (2)类比探索:
    ∠ABP、∠ACP、∠A的关系是 .
    (3)变式探索:
    如图②所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是 .
    2、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.

    (1)求证:△ADE≌△ABC;
    (2)求证:AE=CE.
    3、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.

    4、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.
    (1)如图1,请直接写出∠A和∠C之间的数量关系: .
    (2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.
    (3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .

    5、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.

    6、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.

    7、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
    (1)△AMN是否是等腰三角形?说明理由;
    (2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
    ①求证:△BPM是等腰三角形;
    ②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).

    8、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
    (1)在运动过程中△DEF是什么形状的三角形,并说明理由;
    (2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;

    9、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形.
    已知:在△ABC中,AD 平分∠CAB,交BC 边于点 D,且CD=BD,
    求证:AB=AC.
    以下是甲、乙两位同学的作法.
    甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD≌△ABD,所以这个三角形为等腰三角形;
    乙:延长AD到E,使DE=AD,连接BE,可证△ACD≌△EBD,依据已知条件可推出AB=AC,所以这个三角形为等腰三角形
    (1)对于甲、乙两人的作法,下列判断正确的是( );
    A.两人都正确 B.甲正确,乙错误 C.甲错误,乙正确
    (2)选择一种你认为正确的作法,并证明.

    10、下面是“作一个角的平分线”的尺规作图过程.
    已知:如图,钝角.

    求作:射线OC,使.
    作法:如图,

    ①在射线OA上任取一点D;
    ②以点О为圆心,OD长为半径作弧,交OB于点E;
    ③分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;
    ④作射线OC.
    则OC为所求作的射线.
    完成下面的证明.
    证明:连接CD,CE
    由作图步骤②可知______.
    由作图步骤③可知______.
    ∵,
    ∴.
    ∴(________)(填推理的依据).

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据全等三角形的性质可得,根据即可求得答案.
    【详解】
    解:ABC≌DEF,

    点B、E、C、F在同一直线上,BC=7,EC=4,

    故选B
    【点睛】
    本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
    2、B
    【分析】
    根据三角形存在的条件去判断.
    【详解】
    ∵,,,满足ASA的要求,
    ∴可以画出唯一的三角形,A不符合题意;
    ∵,,,∠A不是AB,BC的夹角,
    ∴可以画出多个三角形,B符合题意;
    ∵,,,满足SAS的要求,
    ∴可以画出唯一的三角形,C不符合题意;
    ∵,,,AB最大,
    ∴可以画出唯一的三角形,D不符合题意;
    故选B.
    【点睛】
    本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
    3、C
    【分析】
    根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.
    【详解】
    解:∵,
    ∴BC=CE,∠ACB=∠DCE,
    ∴∠B=∠BEC,∠ACD=∠BCE,
    ∵,
    ∴∠ACD=∠BCE=180°-2×75°=30°,
    故选:C.
    【点睛】
    本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.
    4、C
    【分析】
    由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴.
    故选:C.
    【点睛】
    题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.
    5、C
    【分析】
    根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
    【详解】
    解:∵AB=AC,D是BC的中点,
    ∴AD⊥BC,
    ∵∠B=35°,
    ∴∠BAD=90°−35°=55°.
    故选:C.
    【点睛】
    本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
    6、B
    【分析】
    根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.
    【详解】
    解:由三角形内角和知∠BAC=180°-∠2-∠1,
    ∵AE为∠BAC的平分线,
    ∴∠BAE=∠BAC=(180°-∠2-∠1).
    ∵AD为BC边上的高,
    ∴∠ADC=90°=∠DAB+∠ABD.
    又∵∠ABD=180°-∠2,
    ∴∠DAB=90°-(180°-∠2)=∠2-90°,
    ∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).
    故选:B
    【点睛】
    本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.
    7、A
    【分析】
    根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可.
    【详解】
    解:

    A. ,,不能根据SSA证明三角形全等,故该选项符合题意;
    B.


    ,

    故能判定,不符合题意;
    C. ,,
    ,故能判定,不符合题意;
    D.


    ,故能判定,不符合题意;
    故选A
    【点睛】
    本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.
    8、A
    【分析】
    利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.
    【详解】
    解:由题意可知:∠ABE=∠AED=∠ECD=90°,
    ,,

    在和中,




    故选:A.
    【点睛】
    本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.
    9、C
    【分析】
    根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
    【详解】
    解:条线段的长分别是4,4,m,若它们能构成三角形,则
    ,即
    又为整数,则整数m的最大值是7
    故选C
    【点睛】
    本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
    10、A
    【分析】
    先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
    【详解】
    解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
    ∴∠EFD=60°,∠ABC=45°,
    ∵BC∥AD,
    ∴∠EFD=∠FBC=60°,
    ∴∠ABF=∠FBC-∠ABC=15°,
    故选A.

    【点睛】
    本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
    二、填空题
    1、65°度
    【分析】
    由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.
    【详解】
    解:∵点D为BC边的中点,
    ∴BD=CD,
    ∵将∠C沿DE翻折,使点C落在AB上的点F处,
    ∴DF=CD,∠EFD=∠C,
    ∴DF=BD,
    ∴∠BFD=∠B,
    ∵∠A=180°-∠C-∠B,∠AFE=180°-∠EFD-∠DFB,
    ∴∠A=∠AFE,
    ∵∠AEF=50°,
    ∴∠A=(180°-50°)=65°.
    故答案为:65°.
    【点睛】
    本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.
    2、67.5°
    【分析】
    连接AE,先得出∠BAC=∠BAE,再根据,得出∠BAC=22.5°,最后得出结果.
    【详解】
    解:连接AE,
    ∵点C是BE中点,
    ∴BC=CE,
    ∵∠ACB=90°,
    ∴AC⊥BE,
    ∴AB=AE,
    ∴∠BAC=∠BAE,
    ∵DE⊥AB,
    ∴∠ADE=90°,
    ∵,
    ∴∠AED=∠DAE=45°,
    ∴∠BAC=∠BAE=22.5°,
    ∴∠B=90°-∠BAC=67.5°.
    故答案为:67.5°.

    【点睛】
    本题考查了线段垂直平分线的性质,等腰三角形的性质及直角三角形的性质,正确作出辅助线是解题的关键.
    3、3
    【分析】
    由等腰三角形三线合一的性质,得到AD=DC=1,由BE=BC+CE不难求解.
    【详解】
    解:三角形是等边三角形,
    BC=AC=2,
    又 是边的高线,
    DC=,
    =1,

    故答案为:3.
    【点睛】
    本题考查了等边三角形的性质,掌握等腰三角形三线合一的性质是解本题的关键.
    4、
    【分析】
    如图(见解析),先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,由此即可得出答案.
    【详解】
    解:如图,在和中,,



    故答案为:.

    【点睛】
    本题考查了三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.
    5、(答案不唯一)
    【分析】
    在与中,已经有条件: 所以补充可以利用证明两个三角形全等.
    【详解】
    解:在与中,

    所以补充:

    故答案为:
    【点睛】
    本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键.
    三、解答题
    1、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP-∠ABP=90°.
    【分析】
    (1)由三角形内角和为180°计算和中的角的关系即可.
    (2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.
    (3)由三角形外角的性质即可推出∠A+∠ACP-∠ABP=90°.
    【详解】
    (1)在中
    ∵∠MPN=90°
    ∴∠PBC+∠PCB=180°-∠MPN=180°-90°=90°
    在中
    ∵∠A+∠ABC+∠ACB=180°
    又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP
    ∴∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
    ∵∠PBC+∠PCB=90°,∠A=50°
    ∴∠ABP +∠ACP=180°-90°-50°=40°
    (2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
    又∵∠PBC+∠PCB=90°
    ∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°
    (3)如图所示,设PN与AB交于点H
    ∵∠A+∠ACP=∠AHP
    又∵∠ABP+∠MPN =∠AHP
    ∴∠A+∠ACP=∠ABP+∠MPN
    又∵∠MPN =90°
    ∴∠A+∠ACP =90°+∠ABP
    ∴∠A+∠ACP-∠ABP=90°.

    【点睛】
    本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.
    2、(1)见解析;(2)见解析
    【分析】
    (1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;
    (2)由全等三角形的性质可得AE=AC,结合∠2=60°可推出△AEC为等边三角形,据此证明.
    【详解】
    (1)证明:∵∠1=∠2
    ∴∠1+=∠2+  
     即∠DAE=∠BAC
    在△ADE和△ABC中
     
     ∴△ADE≌△ABC(ASA)
    (2)证明:∵△ADE≌△ABC
    ∴AE=AC
    又∵∠2=60°
    ∴△AEC为等边三角形
    ∴AE=CE
    【点睛】
    此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.
    3、不合格,理由见解析
    【分析】
    延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
    【详解】
    解:如图,延长BD与AC相交于点E.

    ∵是的一个外角,,,
    ∴,
    同理可得
    ∵李师傅量得,不是115°,
    ∴这个零件不合格.
    【点睛】
    本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
    4、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°
    【分析】
    (1)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (2)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.
    【详解】
    (1)过点B作BE∥AM,如图,

    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C=∠CBE,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.
    故答案为:∠A+∠C=90°;
    (2)∠A和∠C满足:∠C﹣∠A=90°.理由:
    过点B作BE∥AM,如图,

    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C+∠CBE=180°,
    ∴∠CBE=180°﹣∠C,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠ABE+∠CBE=90°,
    ∴∠A+180°﹣∠C=90°,
    ∴∠C﹣∠A=90°;
    (3)设CH与AB交于点F,如图,

    ∵AE平分∠MAB,
    ∴∠GAF=∠MAB,
    ∵CH平分∠NCB,
    ∴∠BCF=∠BCN,
    ∵∠B=90°,
    ∴∠BFC=90°﹣∠BCF,
    ∵∠AFG=∠BFC,
    ∴∠AFG=90°﹣∠BCF.
    ∵∠AGH=∠GAF+∠AFG,
    ∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).
    由(2)知:∠BCN﹣∠MAB=90°,
    ∴∠AGH=90°﹣45°=45°.
    故答案为:45°.
    【点睛】
    本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.
    5、
    【分析】
    由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
    【详解】
    解:∵,,,
    ∴,
    ∵BD是的角平分线,
    ∴,
    在和中,
    ,
    ∴,
    ∴,
    ∵,
    ∴的周长.
    【点睛】
    本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
    6、见解析
    【分析】
    根据等腰三角形的性质,可得∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,从而得到△BDE≌△CDE,进而得到∠DCE=∠DBE,再由BE平分∠ABC,可得 ,进而得到,即可求证.
    【详解】
    解:∵AB=AC,AD是△ABC的中线,
    ∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,
    ∵DE=DE,
    ∴△BDE≌△CDE,
    ∴∠DCE=∠DBE,
    ∵BE平分∠ABC,
    ∴ ,
    ∴,
    ∴,
    ∴CE平分∠ACB.
    【点睛】
    本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.
    7、
    (1)△AMN是是等腰三角形;理由见解析;
    (2)①证明见解析;②a﹣b.
    【分析】
    (1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
    (2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
    ②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
    (1)
    解:△AMN是是等腰三角形,
    理由如下:
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴△AMN是等腰三角形;
    (2)
    ①证明:∵BP平分∠ABC,
    ∴∠PBM=∠PBC,
    ∵MN∥BC,
    ∴∠MPB=∠PBC
    ∴∠PBM=∠MPB,
    ∴MB=MP,
    ∴△BPM是等腰三角形;
    ②由①知MB=MP,
    同理可得:NC=NP,
    ∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
    ∵△ABC的周长为a,BC=b,
    ∴AB+AC+b=a,
    ∴AB+AC=a﹣b
    ∴△AMN的周长=a﹣b.
    【点睛】
    本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
    8、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
    【分析】
    (1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
    (2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
    【详解】
    (1)解:△DEF是等边三角形,
    证明:由点D、E、F的运动情况可知:,
    △ABC是等边三角形,
    ,,
    ,

    在与中,



    同理可证,进而有,

    故△DEF是等边三角形.
    (2)解:由(1)可知△DEF是等边三角形,且,
    ,,,


    在中,,



    等边△ABC的周长为.
    【点睛】
    本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.
    9、(1)C ;(2)见解析
    【分析】
    (1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;
    (2)按照乙的分析方法进行即可.
    【详解】
    (1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,
    故选C;
    (2)依据题意,延长AD至E,使DE=AD,连接BE,如图.
    ∵D为BC中点.
    ∴.
    在△CAD和△BED中

    ∴△CAD≌△BED(SAS).
    ∴,
    ∵AD平分∠BAC,



    ∴AB=AC
    ∴△ABC为等腰三角形

    【点睛】
    本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形.
    10、OE; CE;全等三角形的对应角相等
    【分析】
    根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论.
    【详解】
    证明:连接CD,CE
    由作图步骤②可知___OE___.
    由作图步骤③可知__CE___.
    ∵,
    ∴.
    ∴(__全等三角形对应角相等__)
    故答案为:OE; CE;全等三角形的对应角相等
    【点睛】
    本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.

    相关试卷

    数学七年级下册第十四章 三角形综合与测试测试题:

    这是一份数学七年级下册第十四章 三角形综合与测试测试题,共29页。试卷主要包含了如图,点D,下列叙述正确的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共35页。试卷主要包含了如图,AB=AC,点D,如图,直线l1l2,被直线l3,下列三角形与下图全等的三角形是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共32页。试卷主要包含了如图,点D等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map