终身会员
搜索
    上传资料 赚现金

    难点详解沪教版七年级数学第二学期第十四章三角形专项测试试题(含详细解析)

    立即下载
    加入资料篮
    难点详解沪教版七年级数学第二学期第十四章三角形专项测试试题(含详细解析)第1页
    难点详解沪教版七年级数学第二学期第十四章三角形专项测试试题(含详细解析)第2页
    难点详解沪教版七年级数学第二学期第十四章三角形专项测试试题(含详细解析)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试精练

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试精练,共33页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形专项测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是(  )
    A.3cm B.4cm C.7cm D.10cm
    2、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是(  )

    A.5米 B.10米 C.15米 D.20米
    3、下列命题是真命题的是( )
    A.等腰三角形的角平分线、中线、高线互相重合
    B.一个三角形被截成两个三角形,每个三角形的内角和是90度
    C.有两个角是60°的三角形是等边三角形
    D.在ABC中,,则ABC为直角三角形
    4、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )

    A. B. C. D.
    5、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
    A.6cm B.5cm C.3cm D.1cm
    6、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
    A. B. C. D.
    7、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为(  )

    A.15° B.20° C.25° D.30°
    8、下列说法错误的是( )
    A.任意一个直角三角形都可以被分割成两个等腰三角形
    B.任意一个等腰三角形都可以被分割成两个等腰三角形
    C.任意一个直角三角形都可以被分割成两个直角三角形
    D.任意一个等腰三角形都可以被分割成两个直角三角形
    9、一个三角形三个内角的度数分别是x,y,z.若,则这个三角形是( )
    A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.不存在
    10、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
    A.1个 B.2个 C.3个 D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,为△ABC的中线,为△的中线,为△的中线,……按此规律,为△的中线.若△ABC的面积为8,则△的面积为_______________.

    2、如图,在等边三角形中,,是边的高线,延长至点,使,则BE的长为__________.

    3、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.

    4、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.

    5、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.

    三、解答题(10小题,每小题5分,共计50分)
    1、阅读填空,将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC内),如图①所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究∠ABP与∠ACP是否存在某种数量关系.

    (1)特例探索:
    若∠A=50°,则∠PBC+∠PCB= 度,∠ABP+∠ACP= 度.
    (2)类比探索:
    ∠ABP、∠ACP、∠A的关系是 .
    (3)变式探索:
    如图②所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是 .
    2、如图,点在上,点在上,,∠=∠.求证:.

    3、如图,是等边三角形,D点是BC上一点,,于点E,CE交AD于点P.求的度数.

    4、如图,是的中线,分别过点、作及其延长线的垂线,垂足分别为、.

    (1)求证:;
    (2)若的面积为8,的面积为6,求的面积.
    5、如图,AD为△ABC的角平分线.

    (1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF=   ;
    (2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;
    (3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为    .(用含m,n的式子表示)
    6、如图,将一副直角三角板的直角顶点C叠放在一起.

    (1)如图(1),若∠DCE=33°,则∠BCD= ,∠ACB= .
    (2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.
    (3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为 .
    7、阅读下面材料:活动1利用折纸作角平分线
    ①画图:在透明纸片上画出(如图1-①);②折纸:让的两边QP与QR重合,得到折痕QH(如图1-②);③获得结论:展开纸片,QH就是的平分线(如图1-③).

    活动2利用折纸求角
    如图2,纸片上的长方形ABCD,直线EF与边AB,CD分别相交于点E,F.将对折,点A落在直线EF上的点处,折痕EN与AD的交点为N;将对折,点B落在直线EF上的点处,折痕EM与BC的交点为M.这时的度数可知,而且图中存在互余或者互补的角.
    解答问题:(1)求的度数;
    (2)①图2中,用数字所表示的角,哪些与互为余角?
    ②写出的一个补角.
    解:(1)利用活动1可知,EN是的平分线,EM是的平分线,所以 , .由题意可知,是平角.所以(∠ +∠ )= °.
    (2)①图2中,用数字所表示的角,所有与互余的角是: ;
    ②的一个补角是 .

    8、如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 .
    (1)用等式表示 与CP的数量关系,并证明;
    (2)当∠BPC=120°时,
    ①直接写出 的度数为 ;
    ②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.

    9、已知:如图,,,求证:

    10、如图,在中,、分别是上的高和中线,,,求的长.


    -参考答案-
    一、单选题
    1、C
    【分析】
    设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
    【详解】
    解:设三角形的第三边是xcm.则
    7-3<x<7+3.
    即4<x<10,
    四个选项中,只有选项C符合题意,
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
    2、A
    【分析】
    根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.
    【详解】
    解:连接AB,

    根据三角形的三边关系定理得:
    15﹣10<AB<15+10,
    即:5<AB<25,
    ∴A、B间的距离在5和25之间,
    ∴A、B间的距离不可能是5米;
    故选:A.
    【点睛】
    本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.
    3、C
    【分析】
    分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.
    【详解】
    A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;
    B.三角形的内角和为180°,故此选项错误;
    C.有两个角是60°,则第三个角为,所以三角形是等边三角形,故此选项正确;
    D.设,则,故,解得,所以,,此三角形不是直角三角形,故此选项错误.
    故选:C.
    【点睛】
    本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.
    4、A
    【分析】
    根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
    【详解】
    解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,





    故选A
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    5、C
    【分析】
    根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
    【详解】
    解:设第三边长为xcm,根据三角形的三边关系可得:
    3-2<x<3+2,
    解得:1<x<5,
    只有C选项在范围内.
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
    6、C
    【分析】
    根据三角形的三边关系可得,再解不等式可得答案.
    【详解】
    解:设三角形的第三边为,由题意可得:

    即,
    故选:C.
    【点睛】
    本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
    7、A
    【分析】
    先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
    【详解】
    解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
    ∴∠EFD=60°,∠ABC=45°,
    ∵BC∥AD,
    ∴∠EFD=∠FBC=60°,
    ∴∠ABF=∠FBC-∠ABC=15°,
    故选A.

    【点睛】
    本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
    8、B
    【分析】
    根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
    【详解】
    解:、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;
    、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;
    、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
    、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
    故选:B.
    【点睛】
    本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断.
    9、C
    【分析】
    根据绝对值及平方的非负性可得,,再由三角形内角和定理将两个式子代入求解可得,,即可确定三角形的形状.
    【详解】
    解:,
    ∴且,
    ∴,,
    ∴,
    ∵,
    ∴,
    解得:,,
    ∴三角形为等腰直角三角形,
    故选:C.
    【点睛】
    题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.
    10、C
    【分析】
    根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
    【详解】
    解:c的范围是:5﹣3<c<5+3,即2<c<8.
    ∵c是奇数,
    ∴c=3或5或7,有3个值.
    则对应的三角形有3个.
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系,准确分析判断是解题的关键.
    二、填空题
    1、
    【分析】
    根据三角形的中线性质,可得△的面积=,△的面积=,……,进而即可得到答案.
    【详解】
    由题意得:△的面积=,△的面积=,……,△的面积==.
    故答案是:.
    【点睛】
    本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.
    2、3
    【分析】
    由等腰三角形三线合一的性质,得到AD=DC=1,由BE=BC+CE不难求解.
    【详解】
    解:三角形是等边三角形,
    BC=AC=2,
    又 是边的高线,
    DC=,
    =1,

    故答案为:3.
    【点睛】
    本题考查了等边三角形的性质,掌握等腰三角形三线合一的性质是解本题的关键.
    3、59°
    【分析】
    先利用三角形内角和定理求出∠CAB+∠CBA=180°-∠C=118°,从而利用三角形外角的性质求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分线的定义求出,由此求解即可.
    【详解】
    解:∵∠C=62°,
    ∴∠CAB+∠CBA=180°-∠C=118°,
    ∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,
    ∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,
    ∵△ABC两个外角的角平分线相交于G,
    ∴,,
    ∴,
    ∴∠G=180°-∠GAB-∠GBA=59°,
    故答案为:59°.

    【点睛】
    本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.
    4、E
    【分析】
    到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.
    【详解】
    如图所示,连接BD、AC、GA、GB、GC、GD,
    ∵,,
    ∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,
    根据图形可知,对角线交点为E,
    故答案为:E.

    【点睛】
    本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.
    5、##
    【分析】
    由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.
    【详解】
    解: 把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,

    ∠1=70°,


    故答案为:
    【点睛】
    本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.
    三、解答题
    1、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP-∠ABP=90°.
    【分析】
    (1)由三角形内角和为180°计算和中的角的关系即可.
    (2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.
    (3)由三角形外角的性质即可推出∠A+∠ACP-∠ABP=90°.
    【详解】
    (1)在中
    ∵∠MPN=90°
    ∴∠PBC+∠PCB=180°-∠MPN=180°-90°=90°
    在中
    ∵∠A+∠ABC+∠ACB=180°
    又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP
    ∴∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
    ∵∠PBC+∠PCB=90°,∠A=50°
    ∴∠ABP +∠ACP=180°-90°-50°=40°
    (2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
    又∵∠PBC+∠PCB=90°
    ∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°
    (3)如图所示,设PN与AB交于点H
    ∵∠A+∠ACP=∠AHP
    又∵∠ABP+∠MPN =∠AHP
    ∴∠A+∠ACP=∠ABP+∠MPN
    又∵∠MPN =90°
    ∴∠A+∠ACP =90°+∠ABP
    ∴∠A+∠ACP-∠ABP=90°.

    【点睛】
    本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.
    2、见解析
    【分析】
    根据已知条件和公共角,直接根据角边角证明,进而即可证明
    【详解】
    在与中,

    ∴.
    ∴.
    【点睛】
    本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.
    3、
    【分析】
    由题意易得,,则有,然后可得,进而可证,则有,最后问题可求解.
    【详解】
    解:∵是等边三角形,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴(SAS),
    ∴,
    ∵,
    ∴.
    【点睛】
    本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.
    4、
    (1)见解析
    (2)的面积为20.
    【分析】
    (1)根据已知条件得到、,然后利用全等三角形的判定,进行证明即可.
    (2)分别根据和的面积,用CF表示AF、DF,通过,得到,,用CF表示出AE的长,最后利用面积公式求解即可.
    (1)
    (1)解:由题意可知:
    是的中线

    在与中


    (2)
    解:的面积为8,的面积为6.
    ,即
    ,即
    由(1)可知:



    【点睛】
    本题主要是考查了全等三角形的判定和性质,熟练根据条件证明三角形全等,利用其性质,证明对应边相等,这是解决本题的关键.
    5、
    (1)3
    (2)12
    (3)
    【分析】
    (1)利用ASA证明△AEF≌△ABE,得AE=AB=4,得出答案;
    (2)延长CG、AB交于点H,设S△BGC=S△HGB=a,用两种方法表示△ACH的面积即可;
    (3)在AC上取AN=AB,可得CD=DN=n-m,根据△ABD和△ACD的高相等,面积比等于底之比可求出CD的长.
    (1)
    ∵AD是△ABC的平分线,
    ∴∠BAD=∠CAD,
    ∵BE⊥AD,
    ∴∠BEA=∠FEA,
    在△AEF和△AEB中,

    ∴△AEF≌△AEB(ASA),
    ∴AF=AB=4,
    ∵AC=7
    ∴CF=AC-AF=7-4=3,
    故答案为:3;
    (2)
    延长CG、AB交于点H,如图,

    由(1)知AC=AH,点G为CH的中点,
    设S△BGC=S△HGB=a,
    根据△ACH的面积可得:
    S△ABC+2a=2(6+a),
    ∴S△ABC=12;
    (3)
    在AC上取AN=AB,如图,

    ∵AD是△ABC的平分线,
    ∴∠NAD=∠BAD,
    在△ADN与△ADB中,

    ∴△ADN≌△ADB(SAS),
    ∴∠AND=∠B,DN=BD,
    ∵∠B=2∠C,
    ∴∠AND=2∠C,
    ∴∠C=∠CDN,
    ∴CN=DN=AC-AB=n-m,
    ∴BD=DN=n-m,
    根据△ABD和△ACD的高相等,面积比等于底之比可得:

    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.
    6、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+∠CAE=120°
    【分析】
    (1)根据角的和差定义计算即可.
    (2)利用角的和差定义计算即可.
    (3)利用特殊三角板的性质,角的和差定义即可解决问题.
    【详解】
    解:(1)由题意,


    故答案为:57°,147°.
    (2)∠ACB=180°-∠DCE,
    理由如下:
    ∵ ∠ACE=90°-∠DCE,∠BCD=90°-∠DCE,
    ∴ ∠ACB=∠ACE+∠DCE+∠BCD
    =90°-∠DCE+∠DCE+90°-∠DCE
    =180°-∠DCE.
    (3)结论:∠DAB+∠CAE=120°.
    理由如下:
    ∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,
    又∵∠DAC=∠EAB=60°,
    ∴∠DAB+∠CAE=60°+60°=120°.
    故答案为:∠DAB+∠CAE=120°.
    【点睛】
    本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    7、(1),,,90;(2)①∠1、∠2;②∠CME或∠NEB.
    【分析】

    【详解】
    解:(1)∵折叠
    ∴EN是的平分线,EM是的平分线,
    ∴∠NEA=∠NEA′=,∠BEM=∠B′EM=,
    ∵是平角.
    ∴∠NEM=∠NEA′+∠B′EM==+,
    故答案为:,,,90;

    (2)①∵∠1=∠2,∠A′EN=∠3,∠NEM=90°,
    ∴∠A′EN+∠1=∠NEM=90°,
    ∴互为余角为∠1和∠2,
    故答案为:∠1、∠2;
    ②∵∠A′EN=∠3,∠3+∠NEB=180°,
    ∴∠A′EN的补角为∠NEB.
    ∵∠B=90°,
    ∴∠2+∠EMB=90°,
    ∴∠3=∠EMB,
    ∵∠CME+∠EMB=180°,
    ∴∠3+∠CME=180°,
    ∴∠A′EN的补角为∠CME,
    ∴∠A′EN的补角为∠CME或∠NEB.
    故答案为∠CME或∠NEB.
    【点睛】
    本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.
    8、(1),理由见解析;(2)①60°;②PM=,见解析
    【分析】
    (1)根据等边三角形的性质,可得AB=AC,∠BAC=60°,再由由旋转可知:从而得到,可证得,即可求解 ;
    (2)①由∠BPC=120°,可得∠PBC+∠PCB=60°.根据等边三角形的性质,可得∠BAC=60°,从而得到∠ABC+∠ACB=120°,进而得到∠ABP+∠ACP=60°.再由,可得 ,即可求解;
    ②延长PM到N,使得NM=PM,连接BN.可先证得△PCM≌△NBM.从而得到CP=BN,∠PCM=∠NBM.进而得到 .根据①可得,可证得,从而得到 .再由 为等边三角形,可得 .从而得到 ,即可求解.
    【详解】
    解:(1) .理由如下:
    在等边三角形ABC中,AB=AC,∠BAC=60°,
    由旋转可知:


    在和△ACP中

    ∴ .
    ∴ .
    (2)①∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∵在等边三角形ABC中,∠BAC=60°,
    ∴∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∵ .
    ∴ ,
    ∴∠ABP+∠ABP'=60°.
    即 ;
    ②PM= .理由如下:
    如图,延长PM到N,使得NM=PM,连接BN.

    ∵M为BC的中点,
    ∴BM=CM.
    在△PCM和△NBM中

    ∴△PCM≌△NBM(SAS).
    ∴CP=BN,∠PCM=∠NBM.
    ∴ .
    ∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∴∠PBC+∠NBM=60°.
    即∠NBP=60°.
    ∵∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∴∠ABP+∠ABP'=60°.
    即 .
    ∴ .
    在△PNB和 中

    ∴ (SAS).
    ∴ .

    ∴ 为等边三角形,
    ∴ .
    ∴ ,
    ∴PM= .
    【点睛】
    本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.
    9、证明见解析
    【分析】
    由,,结合公共边 从而可得结论.
    【详解】
    证明:在与中,


    【点睛】
    本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.
    10、6cm
    【分析】
    先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.
    【详解】
    解:∵是边上的中线,
    ∴是的中点,
    ∴,
    ∵,
    ∴,
    ∴=.
    【点睛】
    本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键.

    相关试卷

    2020-2021学年第十四章 三角形综合与测试练习:

    这是一份2020-2021学年第十四章 三角形综合与测试练习,共30页。试卷主要包含了如图,在中,等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题,共36页。

    初中第十四章 三角形综合与测试当堂达标检测题:

    这是一份初中第十四章 三角形综合与测试当堂达标检测题,共28页。试卷主要包含了如图,AB=AC,点D,如图,点D等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map