华师大版八年级上册第11章 数的开方综合与测试复习ppt课件
展开
这是一份华师大版八年级上册第11章 数的开方综合与测试复习ppt课件,共24页。PPT课件主要包含了本章总结提升,知识框架,无理数,有理数,立方根,平方根,实际问题,开平方,开立方,算术平方根等内容,欢迎下载使用。
问题一 平方根的概念及性质
什么是平方根?平方根有哪些性质?如何求一个非负数的平方根?平方与开平方有什么关系?
例1 下列说法中正确的是( )A.-4没有平方根,也没有立方根B.1的立方根是±1C.(-2)2有立方根没有平方根D.-3是9的平方根
【解析】-40,它有平方根;9的平方根是3和-3,故-3是9的平方根。
例2 若2a-3和a-12是m的平方根,求m的值。
解:由2a-3和a-12是m的平方根,可得2a-3和a-12相等或互为相反数。(1)当2a-3=a-12时, 解得a=-9,所以2a-3=-18-3=-21,所以m=(-21)2=441。(2)当(2a-3)+(a-12)=0时,解得 a=5,所以2a-3=10-3=7,所以m=72=49。综上可知,m的值为441或49。
问题二 算术平方根的概念及性质
什么是算术平方根?算术平方根与平方根有哪些区别和联系?如何求一个非负数的算术平方根?
【归纳总结】 正数a的正的平方根就是a的算术平方根,正数a的算术平方根是a的一个平方根。一个非负数的算术平方根只有一个。
问题三 立方根的概念及其性质
什么是立方根?立方根有哪些性质?如何求一个数的立方根?立方与开立方有什么关系?
解:∵a+3的立方根是2,∴a+3=8,解得a=5。∵3a+b-1的平方根是±6,∴3a+b-1=36,解得b=22,∴a+2b=5+2×22=49。∵49的算术平方根是7,∴a+2b的算术平方根是7。
例4 已知a+3的立方根是2,3a+b-1的平方根是±6,则a+2b的算术平方根是多少?
问题四 无理数的概念及实数的分类
什么叫做无理数?无理数和有理数的区别是什么?实数由哪些数组成?
实数与数轴上的点有什么关系?
问题六 实数的大小比较及运算
数的概念是怎样从正整数逐步发展到实数的?随着数的不断扩充,数的运算有什么发展?加法和乘法的运算律始终保持不变吗?如何比较两个实数的大小呢?
【归纳总结】 实数的大小比较有以下三种常见方法:(1)作差法;(2)作商法;(3)取近似值法。
平方根的运算典例分析有关平方根的运算是本章的重点内容,也是本章的难点,有些同学感到不容易理解。为了帮助大家更好地掌握有关平方根的运算,本文从问题的类型、解题技巧和需要注意的方面举例说明,供大家学习时参考。
例1 若正数m的两个平方根分别是2a+3和a-12,求m的值。
【解析】 根据“一个正数的平方根有两个,且它们互为相反数”来解。
解: 因为一个正数的平方根有两个,且它们互为相反数,所以(2a+3)+(a-12)=0,解得a=3,故2a+3=2×3+3=9,a-12=3-12=-9,从而m=(±9)2=81。
【点评】利用平方根的定义解题要深刻理解一个正数的两个平方根互为相反数,列方程求解。
二、算术平方根性质的应用
【点评】要挖掘题中被开方数为非负数这一隐含条件,从而确定字母的取值范围或取值。
例3 已知(x+y)2-4=45,求x+y的值。
【解析】 将x+y看作一个整体,则(x+y)2=49,那么x+y为49的平方根,再由平方根的概念求解。
解:因为(x+y)2-4=45,所以(x+y)2=49。又因为(±7)2=49,所以x+y=-7 或x+y=7。
【点评】将x+y看作一个整体,并理解x+y为49 的平方根。
【点评】先估算带根号的数的整数部分,根据它的整数部分,推出其小数部分,再根据它参与的算式确定算式结果的整数部分和小数部分。
相关课件
这是一份华师大版八年级上册11.2 实数教学课件ppt,共24页。PPT课件主要包含了不循环,有理数和无理数,正有理数,正无理数,负有理数,负无理数,解1284,解386等内容,欢迎下载使用。
这是一份数学八年级上册2 立方根教学ppt课件,共19页。PPT课件主要包含了a的立方根,被开方数,根指数,一个正的,一个负的,-125,立方根,解09等内容,欢迎下载使用。
这是一份初中数学华师大版八年级上册1 平方根教学ppt课件,共19页。PPT课件主要包含了平方等于a,a的平方根,相反数,被开方数,平方根,±01,±3或±1,解13,解03,解11等内容,欢迎下载使用。