2021学年第十四章 三角形综合与测试精练
展开
这是一份2021学年第十四章 三角形综合与测试精练,共32页。试卷主要包含了如图,在中,AD,下列说法错误的是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,若绕点A按逆时针方向旋转40°后与重合,则( ) .
A.40° B.50° C.70° D.100
2、已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,则∠BDC的度数是( )
A.95° B.90° C.85° D.80°
3、如图,△ ABC≌△CDA,∠BAC=80°,∠ABC=65°,则∠CAD的度数为( )
A.35° B.65° C.55° D.40°
4、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )
A.8 B.10 C.20 D.40
5、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )
A. B. C. D.
6、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是( )
A.1个 B.2个 C.3个 D.4个
7、下列说法错误的是( )
A.任意一个直角三角形都可以被分割成两个等腰三角形
B.任意一个等腰三角形都可以被分割成两个等腰三角形
C.任意一个直角三角形都可以被分割成两个直角三角形
D.任意一个等腰三角形都可以被分割成两个直角三角形
8、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )
A.10° B.20° C.30° D.50°
9、如图,等腰中,,,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:①;②;③是等边三角形;④.其中正确的是( )
A.①③④ B.①②③ C.②③④ D.①②③④
10、如图,和全等,且,对应.若,,,则的长为( )
A.4 B.5 C.6 D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在等腰△ABC中,∠A=40°,则∠B=_____°.
2、如图,在中,,,,则的大小等于_______度.
3、如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.
4、如图,点C是线段AB的中点,.请你只添加一个条件,使得≌.
(1)你添加的条件是______;(要求:不再添加辅助线,只需填一个答案即可)
(2)依据所添条件,判定与全等的理由是______.
5、如图,在△ABC中,∠ACB=90°,点D在AB上,将△ABC沿CD折叠,点A落在BC边上的点处,若∠B=35°,则的度数为___________.
三、解答题(10小题,每小题5分,共计50分)
1、已知,∠A=∠D,BC平分∠ABD,求证:AC=DC.
2、如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.
(1)依题意补全图形,并直接写出∠AEB的度数;
(2)用等式表示线段AE,BE,CE之间的数量关系,并证明.
分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……
②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.
请根据上述分析过程,完成解答过程.
3、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,∠ABU+∠CDV=180°.
(1)如图1,求证:AB∥CD;
(2)如图2,BE∥DF,∠MEB=∠ABE+5°,∠FDR=35°,求∠MEB的度数;
(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MG∥EN,连接ME,∠GME=∠GEM,∠EBD=2∠NEG,EB平分∠DEN,MH⊥UV于点H,若∠EDC=∠CDB,求∠GMH的度数.
4、如图,在中,、分别是上的高和中线,,,求的长.
5、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.
6、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.
7、下面是“作一个角的平分线”的尺规作图过程.
已知:如图,钝角.
求作:射线OC,使.
作法:如图,
①在射线OA上任取一点D;
②以点О为圆心,OD长为半径作弧,交OB于点E;
③分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;
④作射线OC.
则OC为所求作的射线.
完成下面的证明.
证明:连接CD,CE
由作图步骤②可知______.
由作图步骤③可知______.
∵,
∴.
∴(________)(填推理的依据).
8、如图,已知点E、C在线段BF上,,,.求证:ΔABC≅ΔDEF.
9、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.
(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.
(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.
10、如图,点在上,点在上,,∠=∠.求证:.
-参考答案-
一、单选题
1、C
【分析】
根据旋转的性质,可得 , ,从而得到,即可求解.
【详解】
解:∵绕点A按逆时针方向旋转40°后与重合,
∴ , ,
∴.
故选:C
【点睛】
本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键.
2、C
【分析】
根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.
【详解】
解:在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS),
∴∠C=∠B,
∵∠B=25°,
∴∠C=25°,
∵∠A=60°,
∴∠BDC=∠A+∠C=85°,
故选C.
【点睛】
本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
3、A
【分析】
先根据三角形内角和定理求出∠ACB=35°,再根据全等三角形性质即可求出∠CAD=35°.
【详解】
解:∵∠BAC=80°,∠ABC=65°,
∴∠ACB=180°-∠BAC-∠ABC=35°,
∵△ABC≌△CDA,
∴∠CAD=∠ACB=35°.
故选:A
【点睛】
本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键.
4、C
【分析】
根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.
【详解】
解:∵AD是边BC上的中线,CD的长为5,
∴CB=2CD=10,
的面积为,
故选:C.
【点睛】
本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.
5、D
【分析】
设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.
【详解】
解:设第三根木棒长为x厘米,由题意得:
8﹣5<x<8+5,即3<x<13,
故选:D.
【点睛】
此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.
6、D
【分析】
由SAS即可证明,则①正确;有∠CAE=∠CDB,然后证明△ACM≌△DCN,则②正确;由CM=CN,∠MCN=60°,即可得到为等边三角形,则③正确;由AD∥CE,则∠DAO=∠NEO=∠CBN,由外角的性质,即可得到答案.
【详解】
解:∵△DAC和△EBC均是等边三角形,
∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,∠MCN=180°-∠ACD-∠BCE=60°,
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS),则①正确;
∴AE=BD,∠CAE=∠CDB,
在ACM和△DCN中,
,
∴△ACM≌△DCN(ASA),
∴CM=CN,;则②正确;
∵∠MCN=60°,
∴为等边三角形;则③正确;
∵∠DAC=∠ECB=60°,
∴AD∥CE,
∴∠DAO=∠NEO=∠CBN,
∴;则④正确;
∴正确的结论由4个;
故选D.
【点睛】
本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.
7、B
【分析】
根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
【详解】
解:、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;
、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;
、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
故选:B.
【点睛】
本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断.
8、B
【分析】
由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
【详解】
解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
∴∠ABD=∠BDC−∠A=50°−30°=20°,
∵BD是△ABC的角平分线,
∴∠DBC=∠ABD=20°,
∵DE∥BC,
∴∠EDB=∠DBC=20°,
故选:B.
【点睛】
本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
9、A
【分析】
①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.
【详解】
解:①如图1,连接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°﹣∠BAD=30°
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;
②由①知:∠APO=∠ABO,∠DCO=∠DBO,
∵点O是线段AD上一点,
∴∠ABO与∠DBO不一定相等,
则∠APO与∠DCO不一定相等,故②不正确;
③∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等边三角形,故③正确;
④如图2,在AC上截取AE=PA,
∵∠PAE=180°﹣∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,
在△OPA和△CPE中,
,
∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP,
∴AB=AO+AP,故④正确;
正确的结论有:①③④,
故选:A.
【点睛】
本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.
10、A
【分析】
全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.
【详解】
∵和全等,,对应
∴
∴AB=DF=4
故选:A.
【点睛】
本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.
二、填空题
1、40°或70°或100°
【分析】
本题要分两种情况讨论:当∠A=40°为顶角;当∠A=40°为底角时,则∠B为底角时或顶角.然后求出∠B.
【详解】
分两种情况讨论:
当∠A=40°为顶角时,;
当∠A=40°为底角时,∠B为底角时∠B=∠A=40°;∠B为顶角时∠B=180°−∠A−∠C=180°−40°−40°=100°.
故答案为:40°或70°或100°.
【点睛】
本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论问题.
2、
【分析】
先根据等腰三角形的性质得出,再根据三角形外角的性质得出求出的度数,最后根据三角形内角和求出的度数即可.
【详解】
解:,
,
,
,
,
,
故答案为:54
【点睛】
此题考查了等腰三角形的性质、三角形内角和定理和外角的性质,掌握相应的性质和定理是解答此题的关键.
3、3
【分析】
根据题意依据等腰三角形的性质,即可得到BD=BC,进而分析计算即可得出结论.
【详解】
解:由题可得,AR平分∠BAC,
又∵AB=AC,
∴AD是三角形ABC的中线,
∴BD=BC=×6=3.
故答案为:3.
【点睛】
本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
4、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一) SAS
【分析】
(1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;
(2)根据添加的条件,写出判断的理由即可.
【详解】
解:(1)添加的条件是:AD=CE(或∠D=∠E或∠ACD=∠B)
故答案为:AD=CE(或∠D=∠E或∠ACD=∠B)
(2)若添加:AD=CE
∵点C是线段AB的中点,
∴AC=BC
∵
∴
∴≌(SAS)
故答案为:SAS
【点睛】
本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键.
5、20°度
【分析】
先根据三角形内角和求出∠A,利用翻折不变性得出,再根据三角形外角的性质即可解决问题.
【详解】
解:,∠B=35°,
,
是由翻折得到,
,
,
.
故答案为:20°.
【点睛】
本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
三、解答题
1、见解析
【分析】
证明△BAC≌△BDC即可得出结论.
【详解】
解:∵BC平分∠ABD,
∴∠ABC=∠DBC,
在△BAC和△BDC中,
∴△BAC≌△BDC,
∴AC=DC.
【点睛】
本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质.
2、(1)图见解析,∠AEB=60°;(2)AE=BE+CE,证明见解析
【分析】
(1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,∠AEC=∠AEB,求出,即可求出,再由进行求解即可;
(2)如图,在AE上截取EG=BE,连接BG.先证明△BGE是等边三角形,得到BG=BE=EG,∠GBE=60°. 再证明∠ABG=∠CBE,即可证明△ABG≌△CBE得到AG=CE,则AE=EG+AG=BE+CE.
【详解】
解:(1)依题意补全图形,如图所示:连接AD,
∵△ABC是等边三角形,
∴∠BAC=60°,AB=AC,
∵,
∴,
∵B、D关于AP对称,
∴,AD=AB=AC,∠AEC=∠AEB,
∴,
∴,
∴,
∴
∴∠AEB=60°.
(2)AE=BE+CE.
证明:如图,在AE上截取EG=BE,连接BG.
∵∠AEB=60°,
∴△BGE是等边三角形,
∴BG=BE=EG,∠GBE=60°.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∴∠ABG+∠GBC=∠GBC+∠CBE=60°,
∴∠ABG=∠CBE.
在△ABG和△CBE中,
∴△ABG≌△CBE(SAS),
∴AG=CE,
∴AE=EG+AG=BE+CE.
【点睛】
本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键
3、(1)见详解;(2)∠MEB=40°,(3)∠GMH=80°
【分析】
(1)根据等角的补角性质得出∠ABD=∠CDV,根据同位角相等两直线平行可得AB∥CD;
(2)根据AB∥CD;利用内错角相等得出∠ABD=∠RDB,根据BE∥DF,得出∠EBD=∠FDB,利用等量减等量差相等得出∠ABE=∠FDR,根据∠FDR=35°,可得∠ABE=∠FDR=35°即可;
(3)设ME交AB于S,根据MG∥EN,得出∠NES=∠GMS=∠GES,设∠NES=y°,可得∠NEG=∠NES+∠GES=2∠NES=2y°,根据∠EBD=2∠NEG,得出∠EBD =4∠NES=4y°,根据∠EDC=∠CDB,设∠EDC=x°,得出∠CDB=7x°,根据AB∥CD,得出∠GBE+∠EBD+∠CDB=180°,可得35+4y+7x=180根据三角形内角和∠BDE=∠BDC-∠EDC=7x-x=6x,∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,利用EB平分∠DEN,得出y°+40°=180°-4y°-6x°,解方程组,解得,可证ME∥UV,根据MH⊥UV,可求∠SMH=90°,∠SMG=∠NES=10°即可.
【详解】
(1)证明:∵∠ABU+∠ABD=180°,∠ABU+∠CDV=180°.
∴∠ABU=180°-∠ABD,∠CDV=180°-∠ABU,
∴∠ABD=∠CDV,
∴AB∥CD;
(2)解:∵AB∥CD;
∴∠ABD=∠RDB,
∴∠ABE+∠EBD=∠FDB+∠FDR,
∵BE∥DF,
∴∠EBD=∠FDB,
∴∠ABE=∠FDR,
∵∠FDR=35°,
∴∠ABE=∠FDR=35°,
∴∠MEB=∠ABE+5°=35°+5°=40°,
(3)解:设ME交AB于S,
∵MG∥EN,
∴∠NES=∠GMS=∠GES,
设∠NES=y°,
∵∠EBD=2∠NEG
∴∠NEG=∠NES+∠GES=2∠NES=2y°,
∴∠EBD =4∠NES=4y°,
∵∠EDC=∠CDB,
设∠EDC=x°
∴∠CDB=7x°,
∵AB∥CD,
∴∠ABD+∠CDB=180°,即∠GBE+∠EBD+∠CDB=180°,
∴35+4y+7x=180,
∵∠BDE=∠BDC-∠EDC=7x-x=6x,
∴∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,
∵EB平分∠DEN,
∴∠NEB=∠BED,
∵∠NEB=∠NES+∠SEB=y°+40°,
∴y°+40°=180°-4y°-6x°,
∴,
解得,
∴∠EBD=4y°=40°=∠MEB,
∴ME∥UV,
∵MH⊥UV,
∴MH⊥ME,
∴∠SMH=90°,,
∵∠SMG=∠NES=10°,
∴∠GMH=90°-∠SMG=90°-10°=80°.
【点睛】
本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键.
4、6cm
【分析】
先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.
【详解】
解:∵是边上的中线,
∴是的中点,
∴,
∵,
∴,
∴=.
【点睛】
本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键.
5、25°
【分析】
直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
【详解】
∵AB=AC,∠A=50°,
∴∠ABC=∠ACB=65°,
∵CD⊥BC于点D,
∴∠BCD的度数为:180°−90°−65°=25°.
【点睛】
此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
6、不合格,理由见解析
【分析】
延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
【详解】
解:如图,延长BD与AC相交于点E.
∵是的一个外角,,,
∴,
同理可得
∵李师傅量得,不是115°,
∴这个零件不合格.
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
7、OE; CE;全等三角形的对应角相等
【分析】
根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论.
【详解】
证明:连接CD,CE
由作图步骤②可知___OE___.
由作图步骤③可知__CE___.
∵,
∴.
∴(__全等三角形对应角相等__)
故答案为:OE; CE;全等三角形的对应角相等
【点睛】
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.
8、见解析
【分析】
由平行线的性质可证明.再由,可推出.最后即可利用“ASA”直接证明.
【详解】
证明:
,即.
∴在和中,
.
【点睛】
本题考查三角形全等的判定,平行线的性质,线段的和与差.掌握三角形全等的判定条件是解答本题的关键.
9、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.
【分析】
(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(3)设∠BAD=x,仿照(2)的解法计算.
【详解】
解:(1)∵∠ADC是△ABD的外角,
∴∠ADC=∠BAD+∠B=105°,
∠DAE=∠BAC﹣∠BAD=30°,
∴∠ADE=∠AED=75°,
∴∠CDE=105°﹣75°=30°;
(2)∠BAD=2∠CDE,
理由如下:设∠BAD=x,
∴∠ADC=∠BAD+∠B=45°+x,
∠DAE=∠BAC﹣∠BAD=90°﹣x,
∴∠ADE=∠AED=,
∴∠CDE=45°+x﹣=x,
∴∠BAD=2∠CDE;
(3)设∠BAD=x,
∴∠ADC=∠BAD+∠B=∠B+x,
∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,
∴∠ADE=∠AED=∠C+x,
∴∠CDE=∠B+x﹣(∠C+x)=x,
∴∠BAD=2∠CDE.
【点睛】
本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
10、见解析
【分析】
根据已知条件和公共角,直接根据角边角证明,进而即可证明
【详解】
在与中,
∴.
∴.
【点睛】
本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.
相关试卷
这是一份数学七年级下册第十四章 三角形综合与测试同步达标检测题,共31页。试卷主要包含了如图,在中,等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题,共36页。
这是一份数学七年级下册第十四章 三角形综合与测试练习题,共41页。