初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共28页。试卷主要包含了如图,在等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:已知:如图,b∥a,c∥a,求证:b∥c;证明:作直线DF交直线a、b、c分别于点D、E、F,∵a∥b,∴∠1=∠4,又∵a∥c,∴∠1=∠5,∴b∥c.小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )A.嘉淇的推理严谨,不需要补充B.应补充∠2=∠5C.应补充∠3+∠5=180°D.应补充∠4=∠52、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设( )A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b3、下列说法:①和为180°且有一条公共边的两个角是邻补角;②过一点有且只有一条直线与已知直线垂直;③同位角相等;④经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有( )A.0个 B.1个 C.2个 D.3个4、如图所示,将一张长方形纸片沿折叠,使顶点、分别落在点、处,交于点,,则( )A.20° B.40° C.70° D.110°5、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )A.45° B.25° C.15° D.20°6、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )A.千米 B.千米 C.千米 D.千米7、如图,下列条件能判断直线l1//l2的有( )①;②;③;④;⑤A.1个 B.2个 C.3个 D.4个8、若∠1与∠2是内错角,则它们之间的关系是 ( )A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠29、如图所示,下列条件中,不能推出AB∥CE成立的条件是( )A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°10、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=( )A.62° B.58° C.52° D.48°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点O在直线AB上,OD⊥OE,垂足为O.OC是∠DOB的平分线,若∠AOD=70°,则∠COE=__________度.2、如图,于点F,于点D,E是AC上一点,,则图中互相平行的直线______.3、下列命题:①等角的余角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等;⑤过直线外一点作这条直线的垂线段,则这条垂线段叫做这个点到这条直线的距离.叙述正确的序号是________.4、如图,直线AD⊥BD,垂足为点D,则点B到AC的距离是线段 _____的长度.5、如图,E在AD的延长线上,下列四个条件:①∠3=∠4;②∠C+∠ABC=180°;③∠A=∠CDE;④∠1=∠2,其中能判定AB∥CD的是________.(填序号)三、解答题(10小题,每小题5分,共计50分)1、如图,点A、B、C在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:(1)延长线段AB到点D,使BD=AB;(2)过点C画CE⊥AB,垂足为E;(3)点C到直线AB的距离是 个单位长度;(4)通过测量 = ,并由此结论可猜想直线BC与AF的位置关系是 . 2、按下面的要求画图,并回答问题:(1)如图①,点M从点O出发向正东方向移动4个格,再向正北方向移动3个格.画出线段OM,此时M点在点O的北偏东 °方向上(精确到1°),O、M两点的距离是 cm.(2)根据以下语句,在“图②”上边的空白处画出图形.画4cm长的线段AB,点P是直纸AB外一点,过点P画直线AB的垂线PD,垂足为点D.你测得点P到AB的距离是 cm.3、如图,直线AB,CD,EF相交于点O,(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.(2)图中一共有几对对顶角?指出它们.4、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.证明:∵CE平分∠BCD(______)∴∠1=_____(_______)∵∠1=∠2=70°(已知)∴∠1=∠2=∠4=70°(________)∴AD∥BC(________)∴∠D=180°-_______=180°-∠1-∠4=40°∵∠3=40°(已知)∴______=∠3∴AB∥CD(_______)5、如图,已知,,,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).理由:C,(已知) ,( ) .( )又,(已知) =180°.(等量代换) ,( ).( ),(已知), .6、在三角形ABC中,于D,F是BC上一点,于H,E在AC上,.(1)如图1,求证:;(2)如图2,若,请直接写出图中与互余的角,不需要证明.7、如图,直线AB,CD相交于点O,OM⊥AB于点O,ON⊥CD于点O.(1)试说明∠1=∠2;(2)若∠BOC=4∠2,求∠AOC的大小.8、如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF,∠AOD=74°,求∠COF的度数.9、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.10、已知如图,∠ABC=∠ADC,BF、DE分别是∠ABC、∠ADC的角平分线,∠1=∠2,那么CD与AB平行吗?写出推理过程. -参考答案-一、单选题1、D【分析】根据平行线的性质与判定、平行公理及推论解决此题.【详解】解:证明:作直线DF交直线a、b、c分别于点D、E、F,∵a∥b,∴∠1=∠4,又∵a∥c,∴∠1=∠5,∴∠4=∠5.∴b∥c.∴应补充∠4=∠5.故选:D.【点睛】本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.2、C【分析】用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).【详解】解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”, 用反证法时应假设结论不成立,即假设a与c不平行(或a与c相交).故答案为:C.【点睛】此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.3、B【分析】根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.【详解】解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;其中正确的有④一共1个.故选择B.【点睛】本题考查基本概念的理解,掌握基本概念是解题关键.4、B【分析】根据题意可得,,再由折叠的性质得到,即可得解;【详解】∵,∴,,∵,∴,,由折叠可知:,则;故选B.【点睛】本题主要考查了折叠问题,平行线的性质,准确计算是解题的关键.5、C【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°-30°=15°.故选:C.【点睛】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.6、B【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故选B.【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.7、D【分析】根据平行线的判定定理进行依次判断即可.【详解】①∵∠1,∠3互为内错角,∠1=∠3,∴; ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;③∠4,∠5互为同位角,∠4=∠5,∴; ④∠2,∠3没有位置关系,故不能证明 ,⑤,,∴∠1=∠3,∴,故选D.【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.8、D【分析】根据内错角角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,内错角才可能相等,∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能,故选D.【点睛】本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.9、B【分析】根据平行线的判定定理分析即可.【详解】A、∠A和∠ACE是AB与CE被AC所截形成的内错角,则∠A=∠ACE时,可以推出AB∥CE,不符合题意;B、∠B和∠ACE不属于AB与CE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出AB∥CE,符合题意;C、∠B和∠ECD是AB与CE被BD所截形成的同位角,则∠B=∠ECD时,可以推出AB∥CE,不符合题意;D、∠B和∠BCE AB与CE被BD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出AB∥CE,不符合题意;故选:B.【点睛】本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.10、A【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,∴,∴,故选:A.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.二、填空题1、35【分析】根据补角的性质,可得∠BOD=110°,再由OC是∠DOB的平分线,可得 ,又由OD⊥OE,可得到∠BOE=20°,即可求解.【详解】解:∵∠AOD=70°,∠AOD+∠BOD=180°,∴∠BOD=110°,∵OC是∠DOB的平分线,∴ ,∵OD⊥OE,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=20°,∴∠COE=∠BOC-∠BOE=35°.故答案为:35【点睛】本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.2、,【分析】由,,可得再证明可得【详解】解: ,, 故答案为:【点睛】本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键.3、①【分析】根据相交线与平行线中的一些概念、性质判断,得出结论.【详解】①等角的余角相等,故正确;②中,需要前提条件:过直线外一点,故错误;③中,相等的角不一定是对顶角,故错误;④中,仅当两直线平行时,同位角才相等,故错误;⑤中应为垂线段的长度叫做这个点到这条直线的距离,故错误.故答案为:①.【点睛】本题考查概念、性质的判定,注意,常考错误类型为某一个性质缺少前提条件的情况,因此我们需要格外注意每一个性质的前提条件.解题的关键是熟练掌握以上概念、性质的判定.4、BD【分析】根据点到直线的距离判断即可;【详解】点的直线的距离为垂线段,因为AD⊥BD,所以点B到AC的距离是线段BD的长度;故答案是:BD.【点睛】本题主要考查了点到直线的距离,准确分析判断是解题的关键.5、②③④【分析】根据平行线的判定定理,逐一判断,即可得到答案.【详解】∵,∴,∴①不符合题意;∵∠C+∠ABC=180°,∴AB∥CD;∴②符合题意;∵∠A=∠CDE,∴AB∥CD;∴③符合题意;∵∠1=∠2,∴AB∥CD.故答案为:②③④.【点睛】本题主要考查平行线的判定定理,掌握平行线的判定定理是解题的关键.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.三、解答题1、(1)见解析;(2)见解析;(3)2;(4),平行【分析】(1)根据网格的特点和题意,延长到,使;(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,(3)点C到直线AB的距离即的长,网格的特点即可数出的长;(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度【详解】解:(1)(2)如图所示, (3)由网格可知即点C到直线AB的距离是个单位长度故答案为:2(4)通过测量,可知故答案为:,平行【点睛】本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.2、(1)图见解析,53,5;(2)图见解析,3.【分析】(1)先根据点的移动得到点,再连接点可得线段,然后测量角的度数和线段的长度即可得;(2)先画出线段,再根据垂线的尺规作图画出垂线,然后测量的长即可得.【详解】解:(1)如图,线段即为所求.此时点在点的北偏东方向上,、两点的距离是,故答案为:53,5;(2)如图,线段和垂线即为所求.测得点到的距离是,故答案为:3.【点睛】本题考查了测量角的大小、线段的长度、作线段和垂线,熟练掌握尺规作图的方法是解题关键.3、(1)∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF,.∠AOC的邻补角是∠AOD,∠BOC;(2)共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD【分析】根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.【详解】解:(1)由题意得:∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF.∠AOC的邻补角是∠AOD,∠BOC.(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.【点睛】本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.4、见解析【分析】由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.【详解】证明:∵CE平分∠BCD( 已知 ),∴∠1= ∠4 ( 角平分线定义 ),∵∠1=∠2=70°已知,∴∠1=∠2=∠4=70°(等量代换),∴AD∥BC(内错角相等,两直线平行),∴∠D=180°-∠BCD=180°-∠1-∠4=40°,∵∠3=40°已知,∴ ∠D =∠3,∴AB∥CD(内错角相等,两直线平行).故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.【点睛】本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.5、GD;AC;同位角相等,两直线平行;;两直线平行,内错角相等;;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】解:,已知,同位角相等,两直线平行两直线平行,内错角相等又,(已知)(等量代换),同旁内角互补,两直线平行)(两直线平行,同位角相等),(已知) ,,.【点睛】本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.6、(1)证明见解析;(2).【分析】(1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断;(2)由可推出,,即得出,.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.(1)证明:∵,,∴,∴.∵,∴,∴.(2)与互余的角有:.证明:∵,∴,,∴,. ∵,∴,∴.∵,∴,即.综上,可知与互余的角有:.【点睛】本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键.7、(1)见解析;(2)60°【分析】(1)利用同角的余角相等解答即可得出结论;(2)利用(1)的结论,等量代换可得∠BOC=4∠1,利用∠BOM=90°=3∠1,求得∠1的度数,则∠AOC=90°﹣∠1.【详解】解:(1)∵OM⊥AB,ON⊥CD,∴∠AOM=∠CON=90°,∴∠AOC+∠1=90°,∠AOC+∠2=90°,∴∠1=∠2.(2)∵OM⊥AB,∴∠BOM=90°.∵∠1=∠2,∠BOC=4∠2,∴∠BOC=4∠1.∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=3∠1,即3∠1=90°,∴∠1=30°.∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.【点睛】本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.8、53°【分析】首先根据对顶角相等可得∠BOC=74°,再根据角平分线的性质可得∠COE=∠COB=37°,再利用余角定义可计算出∠COF的度数.【详解】解:∵∠AOD=74°,∴∠BOC=74°,∵OE是∠COB的平分线,∴∠COE=∠COB=37°,∵OE⊥OF,∴∠EOF=90°,∴∠COF=90°-37°=53°.【点睛】本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分成相等的两部分.9、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.∠BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.10、平行,见解析【分析】先由角平分线的定义得到∠3=∠ADC,∠2=∠ABC,再由∠ABC=∠ADC,得到∠3=∠2,即可推出∠3=∠1,再由内错角相等,两直线平行即可证明.【详解】解:CD∥AB.理由如下:∵BF、DE分别是∠ABC、∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC.∵∠ABC=∠ADC,∴∠3=∠2.又∵∠1=∠2,∴∠3=∠1.∴CD∥AB(内错角相等,两直线平行).【点睛】本题主要考查了角平分线的定义,平行线的判定,解题的关键在于能够熟练掌握角平分线的定义与平行线的判定条件.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题,共27页。试卷主要包含了如图,能与构成同位角的有,下列命题正确的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试综合训练题,共33页。试卷主要包含了下列说法中,正确的是,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题,共30页。试卷主要包含了下列命题中,为真命题的是,如图,直线AB,直线m外一点P它到直线的上点A等内容,欢迎下载使用。