初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共33页。试卷主要包含了如图,为估计池塘岸边A等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列长度的三条线段能组成三角形的是( )
A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 11
2、若等腰三角形的一个外角是70°,则它的底角的度数是( )
A.110° B.70° C.35° D.55°
3、以下列各组线段为边,能组成三角形的是( )
A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm
4、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )
A. B. C. D.
5、如图,,点E在线段AB上,,则的度数为( )
A.20° B.25° C.30° D.40°
6、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是( )
A.3 B.4 C.5 D.6
7、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:
①∠CDF=30°;②∠ADB=50°;
③∠ABD=22°;④∠CBN=108°
其中正确说法的个数是( )
A.1个 B.2个 C.3个 D.4个
8、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是( )
A.5米 B.10米 C.15米 D.20米
9、下列各组线段中,能构成三角形的是( )
A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、6
10、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
A.3cm B.6cm C.10cm D.12cm
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值___.
2、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是________.
3、如图,已知∠A=60°,∠B=20°,∠C=30°,则∠BDC的度数为_____.
4、若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是_____.
5、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)
三、解答题(10小题,每小题5分,共计50分)
1、如图,是等边三角形,D点是BC上一点,,于点E,CE交AD于点P.求的度数.
2、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
(1)求证:AB//CD;
(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.
3、如图,AD,BC相交于点O,AO=DO.
(1)如果只添加一个条件,使得△AOB≌△DOC,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);
(2)根据已知及(1)中添加的一个条件,证明AB=DC.
4、如图,,,E为BC中点,DE平分.
(1)求证:平分;
(2)求证:;
(3)求证:.
5、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.
(1)如图1,当时,直接写出BC与CE的位置关系;
(2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
6、如图,AB=AD,AC=AE,BC=DE,点E在BC上.
(1)求证:∠EAC=∠BAD;
(2)若∠EAC=42°,求∠DEB的度数.
7、已知:如图,点D为BC的中点,,求证:是等腰三角形.
8、如图,为等边三角形,D是BC中点,,CE是的外角的平分线.
求证:.
9、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,,P为上一点,当_______时,与是偏等积三角形;
(2)如图2,四边形是一片绿色花园,、是等腰直角三角形,.
①与是偏等积三角形吗?请说明理由;
②已知的面积为.如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G.若小路每米造价600元,请计算修建小路的总造价.
10、如图,是的角平分线,于点.
(1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
(2)在(1)中所作的图形中,求证:.
-参考答案-
一、单选题
1、C
【分析】
根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.
【详解】
解:A.∵3+4<8,
∴不能组成三角形,故本选项不符合题意;
B.∵4+4<10,
∴不能组成三角形,故本选项不符合题意;
C.∵5+6>10,
∴能组成三角形,故本选项符合题意;
D.∵5+6=11,
∴不能组成三角形,故本选项不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.
2、C
【分析】
先求出与这个外角相邻的内角的度数为,再根据三角形的内角和定理即可得.
【详解】
解:等腰三角形的一个外角是,
与这个外角相邻的内角的度数为,
这个等腰三角形的顶角的度数为,底角的度数为,
故选:C.
【点睛】
本题考查了等腰三角形、三角形的内角和定理等知识点,判断出等腰三角形的顶角的度数为是解题关键.
3、A
【分析】
三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.
【详解】
解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;
所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;
所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;
所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;
故选A
【点睛】
本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.
4、A
【分析】
根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
【详解】
解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,
∴
即
故选A
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
5、C
【分析】
根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.
【详解】
解:∵,
∴BC=CE,∠ACB=∠DCE,
∴∠B=∠BEC,∠ACD=∠BCE,
∵,
∴∠ACD=∠BCE=180°-2×75°=30°,
故选:C.
【点睛】
本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.
6、A
【分析】
根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.
【详解】
解:如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
故共有3个点,
故选:A.
【点睛】
本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.
7、D
【分析】
根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.
【详解】
解:∵AD∥BC,∠C=30°,
∴∠FDC=∠C=30°,故①正确;
∴∠ADC=180°-∠FDC=180°-30°=150°,
∵∠ADB:∠BDC=1:2,
∴∠BDC=2∠ADB,
∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,
解得∠ADB=50°,故②正确
∵∠EAB=72°,
∴∠DAN=180°-∠EAB=180°-72°=108°,
∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确
∵AD∥BC,
∴∠CBN=∠DAN=108°,故④正确
其中正确说法的个数是4个.
故选择D.
【点睛】
本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.
8、A
【分析】
根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.
【详解】
解:连接AB,
根据三角形的三边关系定理得:
15﹣10<AB<15+10,
即:5<AB<25,
∴A、B间的距离在5和25之间,
∴A、B间的距离不可能是5米;
故选:A.
【点睛】
本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.
9、C
【分析】
根据三角形的三边关系定理逐项判断即可得.
【详解】
解:三角形的三边关系定理:任意两边之和大于第三边.
A、,不能构成三角形,此项不符题意;
B、,不能构成三角形,此项不符题意;
C、,能构成三角形,此项符合题意;
D、,不能构成三角形,此项不符题意;
故选:C.
【点睛】
本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
10、C
【分析】
设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
【详解】
解:设第三根木棒的长度为cm,则
所以A,B,D不符合题意,C符合题意,
故选C
【点睛】
本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
二、填空题
1、
【分析】
连接,交于点,连接,则的最小值为,再由已知求出的长即可.
【详解】
解:连接,交于点,连接,
是等边三角形,是边中点,
点与点关于对称,
,
,
的最小值为,
是的中点,
,
,的面积为,
,
的最小值为,
故答案为:.
【点睛】
本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键.
2、或
【分析】
因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.
【详解】
解:①当为底时,其它两边都为,
、、可以构成三角形,
周长为;
②当为底时,其它两边都为,
、、可以构成三角形,
周长为;
故答案为:或.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.
3、110°
【分析】
延长BD交AC于点E,根据三角形的外角性质计算,得到答案.
【详解】
延长BD交AC于点E,
∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,
∴∠DEC=∠A+∠B=80°,
则∠BDC=∠DEC+∠C=110°,
故答案为:110°.
【点睛】
本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE是解题的关键.
4、圆锥
【分析】
根据立体图形视图、等腰三角形的性质分析,即可得到答案.
【详解】
根据题意,这个立体图形是圆锥
故答案为:圆锥.
【点睛】
本题考查了等腰三角形、圆锥、立体图形视图的知识;解题的关键是熟练掌握立体图形视图的性质,从而完成求解.
5、②
【分析】
根据两边及其夹角对应相等的两个三角形全等,即可求解.
【详解】
解:①若选,是边边角,不能得到形状和大小都确定的;
②若选,是边角边,能得到形状和大小都确定的;
③若选,是边边角,不能得到形状和大小都确定的;
所以乙同学可以选择的条件有②.
故答案为:②
【点睛】
本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.
三、解答题
1、
【分析】
由题意易得,,则有,然后可得,进而可证,则有,最后问题可求解.
【详解】
解:∵是等边三角形,
∴,,
∵,
∴,
∴,
∴,
∵,
∴,
∴(SAS),
∴,
∵,
∴.
【点睛】
本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.
2、(1)见解析;(2)见解析;(3)108°
【分析】
(1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;
(2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;
(3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.
【详解】
证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC
∴∠AEG=∠C
∴AB//CD
(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°
∴∠DGC+∠AHF=180°
∴EC//BF
∴∠B=∠AEG
由(1)得∠AEG=∠C
∴∠B=∠C
(3)由(2)得EC//BF
∴∠BFC+∠C=180°
∵∠BFC=4∠C
∴∠C=36°
∴∠DGC=36°
∵∠C+∠DGC+∠D=180°
∴∠D=108°
【点睛】
此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.
3、(1)OB=OC(或,或);(2)见解析
【分析】
(1)根据SAS添加OB=OC即可;
(2)由(1)得△AOB≌△DOC,由全等三角形的性质可得结论.
【详解】
解:(1)添加的条件是:OB=OC(或,或)
证明:在和中
所以,△AOB≌△DOC
(2)由(1)知,△AOB≌△DOC
所以,AB=DC.
【点睛】
本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键
4、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
(2)由(1)即可用三线合一定理证明;
(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
【详解】
解:(1)如图所示,延长DE交AB延长线于F,
∵∠B=∠C=90°,
∴AB∥CD,
∴∠CDE=∠F,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠ADF=∠F,
∴AD=AF,
∴△ADF是等腰三角形,
∵E是BC的中点,
∴CE=BE,
∴△CDE≌△BFE(AAS),
∴DE=FE,
∴E是DF的中点,
∴AE平分∠BAD;
(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
∴AE⊥DE;
(3)∵△CDE≌△BFE,
∴CD=BF,
∴AD=AF=AB+BF=AB+CD.
【点睛】
本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
5、
(1)
(2)或,见解析
【分析】
(1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
(2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
(1)
解:,,
∴∠B=∠ACB=45°,
∵,
∴,即∠BAD=∠CAE,
∵,,
∴△BAD≌△CAE,
∴∠ACE=∠B=45°,
∴∠BCE=∠ACB+∠ACE=90°,
∴;
(2)
解:如图,补全图形;
.
证明:∵,
∴.
又∵,,
∴≌.
∴,,.
∵,
∴.
∴.
延长EF到点G,使.
∵,
∴.
∴.
∵,
∴.
∴.
∵,
∴≌.
∴.
∵,
∴.
如图,同理可证.
.
【点睛】
此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
6、(1)见解析;(2)42°
【分析】
(1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
(2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
【详解】
(1)证明:∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE.
∴∠BAC=∠DAE.
∴∠BAC-∠BAE=∠DAE-∠BAE.
即∠EAC=∠BAD;
(2)解:∵AC=AE,∠EAC=42°,
∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
∵△ABC≌△ADE,
∴∠AED=∠C=69°,
∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
【点睛】
本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
7、证明见解析
【分析】
过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明.
【详解】
如下图,过点D作,交AB于点M,过点D做,交AC于点N
∵
∴
直角和直角中
∴
∴
∵点D为BC的中点,
∴
直角和直角中
∴
∴
∵,
∴,即是等腰三角形.
【点睛】
本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解.
8、证明见解析.
【分析】
过D作DG∥AC交AB于G,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.
【详解】
证明:过D作DG∥AC交AB于G,
∵△ABC是等边三角形,
∴AB=AC,∠B=∠ACB=∠BAC=60°,
又∵DG∥AC,
∴∠BDG=∠BGD=60°,
∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,
∴DG=BD,
∵点D为BC的中点,
∴BD=CD,
∴DG=CD,
∵EC是△ABC外角的平分线,
∴∠ACE=(180°−∠ACB)=60°,
∴∠BCE=∠ACB+∠ACE=120°=∠AGD,
∵AB=AC,点D为BC的中点,
∴∠ADB=∠ADC=90°,
又∵∠BDG=60°,∠ADE=60°,
∴∠ADG=∠EDC=30°,
在△AGD和△ECD中,
,
∴△AGD≌△ECD(ASA).
∴AD=DE.
【点睛】
本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
9、(1);(2)①与是偏等积三角形,理由见详解;②修建小路的总造价为元
【分析】
(1)当时,则,证,再证与不全等,即可得出结论;
(2)①过作于,过作于,证,得,则,再证与不全等,即可得出结论;②过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,,求出,即可求解.
【详解】
解:(1)当时,与是偏等积三角形,理由如下:
设点到的距离为,则,,
,
,,
,
、,
与不全等,
与是偏等积三角形,
故答案为:;
(3)①与是偏等积三角形,理由如下:
过作于,过作于,如图3所示:
则,
、是等腰直角三角形,
,,,
,
,
,
在和中,
,
,
,
,,
,
,,
,
,,
与不全等,
与是偏等积三角形;
②如图4,过点作,交的延长线于,
则,
点为的中点,
,
在和中,
,
,
,
,
,
,
,
,
,
,
在和中,
,
,
,
,
,
,
.
由①得:与是偏等积三角形,
,,
,
修建小路的总造价为:(元.
【点睛】
本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型.
10、(1)见解析;(2)见解析.
【分析】
(1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
(2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
【详解】
解:(1)如图,点F、G即为所求作的点;
(2)是的角平分线,,,
【点睛】
本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习,共36页。试卷主要包含了下列三个说法等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共30页。试卷主要包含了下列叙述正确的是,已知长方形纸片ABCD,点E,如图,点A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题,共29页。试卷主要包含了如图,为估计池塘岸边A,下列命题是真命题的是等内容,欢迎下载使用。