年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新沪教版七年级数学第二学期第十四章三角形综合训练试题(含详解)

    2022年最新沪教版七年级数学第二学期第十四章三角形综合训练试题(含详解)第1页
    2022年最新沪教版七年级数学第二学期第十四章三角形综合训练试题(含详解)第2页
    2022年最新沪教版七年级数学第二学期第十四章三角形综合训练试题(含详解)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共32页。试卷主要包含了尺规作图,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点ABCD在一条直线上,点EFAD两侧,,添加下列条件不能判定的是(    A. B. C. D.2、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是(    A.50° B.70° C.110° D.120°3、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(mn)().若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是(    A. B. C. D.4、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是(     A.SSS B.SAS C.ASA D.AAS5、若一个三角形的三个外角之比为3:4:5,则该三角形为(  )A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形6、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是(    A.50° B.60° C.40° D.30°7、以下列各组线段为边,能组成三角形的是(    A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm8、若等腰三角形的一个外角是70°,则它的底角的度数是(    A.110° B.70° C.35° D.55°9、等腰三角形的一个角是80°,则它的一个底角的度数是(    A.50° B.80° C.50°或80° D.100°或80°10、如图,等边中,DAC中点,点PQ分别为ABAD上的点,,在BD上有一动点E,则的最小值为(    A.7 B.8 C.10 D.12第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点EF分别为线段BCDB上的动点,BEDF.要使AE+AF最小值,若用作图方式确定EF,则步骤是 _____.2、△ABC的高AD所在直线与高BE所在直线相交于点FDFCD,则∠ABC=______.3、如图,在正方形网格中,∠BAC______∠DAE.(填“>”、“=”或“<”)4、等腰三角形的一条边长为5,周长为20,则该三角形的腰长为__________.5、如图,,点G分别为ADCF的中点,若,则AC=______.三、解答题(10小题,每小题5分,共计50分)1、如图,,求证:2、如图,在△ABC中,CE平分∠ACBAB于点EAD是△ABCBC上的高,ADCE相交于点F,且∠ACB=80°,求∠AFE的度数.3、如图,在四边形ABCD中,ECB上一点,分别延长AEDC相交于点F(1)求证:(2)若,求BE的长.4、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰5、已知,如图,ABAD,∠B=∠D,∠1=∠2=60°. (1)求证:△ADE≌△ABC    (2)求证:AECE6、如图,是等边三角形,,分别交ABAC于点DE(1)求证:是等边三角形;(2)点F在线段DE上,点G外,,求证:7、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你完成下列问题:(1)已知:如图①,在中,,直线BD平分AC于点D.求证:都是等腰三角形;(2)在证明了该命题后,小尹同学发现:图②、③两个等腰三角形也具有这种特性,请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小尹又发现:还有一些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.8、如图,在中,,点D内一点,连接CD,过点C,连接ADBE.求证:9、已知:(1)O是∠BAC内部的一点.①如图1,求证:∠BOC>∠A②如图2,若OAOBOC,试探究∠BOC与∠BAC的数量关系,给出证明.(2)如图3,当点O在∠BAC的外部,且OAOBOC,继续探究∠BOC与∠BAC的数量关系,给出证明.10、如图,在四边形ABCD中,点EBC上,连接DEAC相交于点F,∠BAE=∠CADABAEADAC(1)求证:∠DEC=∠BAE(2)如图2,当∠BAE=∠CAD=30°,ADAB时,延长DEAB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形. -参考答案-一、单选题1、A【分析】根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可.【详解】解:A. ,不能根据SSA证明三角形全等,故该选项符合题意;B. ,故能判定,不符合题意;C. ,,故能判定,不符合题意;D.,故能判定,不符合题意;故选A【点睛】本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.2、B【分析】根据旋转可得,得【详解】解:绕点逆时针旋转得到△,使点的对应点恰好落在边上,故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.3、B【分析】过点轴于,由“”可证,可得,即可求解.【详解】解:如图,过点轴于是等腰直角三角形,且中,故选:B.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.4、A【分析】利用基本作图得到ODOCOD′=OC′,CDCD′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△OCD′,然后根据全等三角形的性质得到∠AOB′=∠AOB【详解】解:由作法可得ODOCOD′=OC′,CDCD′,所以根据“SSS”可判断△OCD≌△OCD′,所以∠AOB′=∠AOB故选:A【点睛】本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.5、A【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A.【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.6、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.7、A【分析】三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.【详解】解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意; 所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意; 所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意; 所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;故选A【点睛】本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.8、C【分析】先求出与这个外角相邻的内角的度数为,再根据三角形的内角和定理即可得.【详解】解:等腰三角形的一个外角是与这个外角相邻的内角的度数为这个等腰三角形的顶角的度数为,底角的度数为故选:C.【点睛】本题考查了等腰三角形、三角形的内角和定理等知识点,判断出等腰三角形的顶角的度数为是解题关键.9、C【分析】已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.【详解】解:等腰三角形的一个角是80°,当80º为底角时,它的一个底角是80º,当80º为顶角时,它的一个底角是则它的一个底角是50º或80º.故选:C.【点睛】本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.10、C【分析】作点关于的对称点,连接,连接,此时的值最小,最小值,据此求解即可.【详解】解:如图,是等边三角形,DAC中点,作点关于的对称点,连接,连接,此时的值最小.最小值是等边三角形,的最小值为故选:C.【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.二、填空题1、①连接,作;②以点为圆心、长为半径画弧,交于点;③连接于点;④以点为圆心、长为半径画弧,交于点【分析】按照①连接,作;②以点为圆心、长为半径画弧,交于点;③连接于点;④以点为圆心、长为半径画弧,交于点的步骤作图即可得.【详解】解:步骤是①连接,作②以点为圆心、长为半径画弧,交于点③连接于点④以点为圆心、长为半径画弧,交于点如图,点即为所求.故答案为:①连接,作;②以点为圆心、长为半径画弧,交于点;③连接于点;④以点为圆心、长为半径画弧,交于点【点睛】本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键.2、45°或135°【分析】根据题意,分两种情况讨论:①当为锐角三角形时;②当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.【详解】解:①如图所示:当为锐角三角形时,中,②如图所示:当为钝角三角形时,中,综合①②可得:故答案为:【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.3、【分析】找到点,连接(见解析),根据等腰直角三角形的性质、网格特点即可得【详解】解;如图,找到点,连接是等腰直角三角形,是等腰直角三角形,故答案为:【点睛】本题考查了等腰直角三角形、角的大小比较,正确找出点是解题关键.4、7.5【分析】根据腰长是否为5,分两类情况进行求解即可.【详解】解:当腰长为5时,由周长可知:底边长为10,且故不满足三边关系,不成立,当腰长不为5时,则底边长为5,由周长可得:腰长为满足三边关系,故腰长为7.5,故答案为:7.5.【点睛】本题主要是考查了等腰三角形的性质以及三角形的三边关系,熟练根据腰长来进行分类讨论,这是解决本题的关键.5、4【分析】根据SAS证明,由全等三角形的性质得,由,推出都是等腰三角形,故得,设,则,列出等量关系式解出,即可得出【详解】∵点G分别为ADCF的中点,都是等腰三角形,,则解得:故答案为:4.【点睛】本题考查全等三角形的判定与性质,等腰三角形的判定与性质,根据题意找出关系式是解题的关键.三、解答题1、证明过程见解析【分析】先证明,得到,再证明,即可得解;【详解】由题可得,在中,又∵中,【点睛】本题主要考查了全等三角形的判定与性质,准确分析证明是解题的关键.2、∠AFE=50°.【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB=AD是△ABCBC上的高,ADBC∴∠ADC=90°,∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,∴∠AFE=∠DFC=50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.3、(1)见解析(2)【分析】(1)利用的外角,以及证明即可.(2)证明,可知,从而得出答案.(1)证明:∵的外角,又∵,∴(2)解:在中,【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.4、答案见解析【分析】AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可【详解】解:如图,……[答案不唯一]【点睛】本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.5、(1)见解析;(2)见解析【分析】(1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AEAC,结合∠2=60°可推出△AEC为等边三角形,据此证明.【详解】(1)证明:∵∠1=∠2 ∴∠1+=∠2+   即∠DAE=∠BAC在△ADE和△ABC   ∴△ADE≌△ABCASA(2)证明:∵△ADE≌△ABC AEAC又∵∠2=60°∴△AEC为等边三角形AECE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.6、(1)见详解;(2)见详解【分析】(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;(2)连接AG,由题意易得AB=AC,然后可知△ABF≌△ACG,则有AF=AG,进而可得∠FAG=60°,最后问题可求证.【详解】证明:(1)∵是等边三角形,DEBC是等边三角形;(2)连接AG,如图所示:是等边三角形,AB=AC∴△ABF≌△ACGSAS),是等边三角形,【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.7、(1)见详解;(2)见详解;(3)见详解;(4)见详解;【分析】(1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,则可得AD=BD=CB,所以△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.(1)证明:在△ABC中,∵AB=AC∴∠ABC=∠C∵∠A=36°,∴∠ABC=∠C=(180°-∠A)=72°,BD平分∠ABC∴∠1=∠2=36°∴∠3=∠1+∠A=72°,∴∠1=∠A,∠3=∠CAD=BDBD=BC∴△ABD与△BDC都是等腰三角形(2)解:如下图所示:(3)解:如图所示:(4)解:特征一:直角三角形(直角边不等);特征二:2倍内角关系,在△ABC中,∠A=2∠B,0°<∠B<45°,其中,∠B≠30°;【点睛】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.8、证明见解析.【分析】先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.【详解】证明:中,【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.9、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析【分析】(1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;②延长AO至点E,根据三角形外角性质解答即可;(2)根据三角形外角性质和三角形内角和定理解答即可.【详解】证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO∴∠BOC>∠A②∠BOC与∠BAC的数量关系:∠BOC=2∠A证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠COAOBOC∴∠BAO=∠B,∠CAO=∠C∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC(2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC证明:如图所示,设∠BxOAOBOC∴∠B=∠BAOx,∠C=∠OAC=∠BAC+x在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAEx+∠BOC=∠CAE+x+∠CAE=2∠BAC+x即∠BOC=2∠BAC【点睛】此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.10、(1)见解析;(2)△AEF、△ADG、△DCF、△ECD【分析】(1)根据已知条件得到∠BAE=∠CAD,根据全等三角形的性质得到∠AED=∠ABC,根据等腰三角形的性质得到∠ABC=∠AEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论.【详解】证明:(1)如图1,∵∠BAE=∠CAD∴∠BAE+∠CAE=∠CAD+∠CAE即∠BAC=∠EAD在△AED与△ABC中,∴△AED≌△ABC∴∠AED=∠ABC∵∠BAE+∠ABC+∠AEB=180°,CED+∠AED+∠AEB=180°,ABAE∴∠ABC=∠AEB∴∠BAE+2∠AEB=180°,CED+2∠AEB=180°,∴∠DEC=∠BAE(2)解:如图2, ①∵∠BAE=∠CAD=30°,∴∠ABC=∠AEB=∠ACD=∠ADC=75°,由(1)得:∠AED=∠ABC=75°,DEC=∠BAE=30°,ADAB∴∠BAD=90°,∴∠CAE=30°,∴∠AFE=180°−30°−75°=75°,∴∠AEF=∠AFE∴△AEF是等腰三角形, ②∵∠BEG=∠DEC=30°,∠ABC=75°,∴∠G=45°,RtAGD中,∠ADG=45°,∴△ADG是等腰直角三角形, ③∠CDF=75°−45°=30°,∴∠DCF=∠DFC=75°,∴△DCF是等腰直角三角形;④∵∠CED=∠EDC=30°,∴△ECD是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题,共36页。

    数学七年级下册第十四章 三角形综合与测试同步训练题:

    这是一份数学七年级下册第十四章 三角形综合与测试同步训练题,共31页。试卷主要包含了有下列说法,若一个三角形的三个外角之比为3,三角形的外角和是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共32页。试卷主要包含了有下列说法等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map