数学第十四章 三角形综合与测试同步训练题
展开
这是一份数学第十四章 三角形综合与测试同步训练题,共32页。试卷主要包含了已知,下列四个命题是真命题的有等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )
A.两点确定一条直线
B.两点之间,线段最短
C.三角形具有稳定性
D.三角形的任意两边之和大于第三边
2、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是( )
A.SSS B.SAS C.ASA D.AAS
3、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是( )
A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B
4、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).
A.65° B.65°或80° C.50°或80° D.50°或65°
5、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )
A.10° B.20° C.30° D.50°
6、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )
A.110° B.70° C.55° D.35°
7、已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,则∠BDC的度数是( )
A.95° B.90° C.85° D.80°
8、下列四个命题是真命题的有( )
①同位角相等;
②相等的角是对顶角;
③直角三角形两个锐角互余;
④三个内角相等的三角形是等边三角形.
A.1个 B.2个 C.3个 D.4个
9、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
A.50° B.70° C.110° D.120°
10、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
A.6cm B.5cm C.3cm D.1cm
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,BD和CD分别是和的平分线,EF过点D,且,若,,则EF的长为______.
2、如图,△ABC中,AB=AC=DC,D在BC上,且AD=DB,则∠BAC=_____.
3、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于 _______
4、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.
5、如图,已知点是射线上一点,过作交射线于点,交射线于点,给出下列结论:①是的余角;②图中互余的角共有3对;③的补角只有;④与互补的角共有3个,其中正确结论有______(把你认为正确的结论的序号都填上).
三、解答题(10小题,每小题5分,共计50分)
1、如图,点A,B,C,D在一条直线上,,,.求证:.
2、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
(1)如图1,点D在线段BC上.
①根据题意补全图1;
②∠AEF = (用含有的代数式表示),∠AMF= °;
③用等式表示线段MA,ME,MF之间的数量关系,并证明.
(2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.
3、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.
4、如图,在中,,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F.
(1)求证:;
(2)若,,则______度.
5、△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.
(1)若∠BAC=40°,求∠E的度数;
(2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.
6、如图,在中,,,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.
(1)求证:;
(2)若,求的度数.
7、如图,等边△ABC中,点D在BC上,CE=CD,∠BCE=60°,连接AD、BE.
(1)如图1,求证:AD=BE;
(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.
8、已知:如图,AD,BE相交于点O,AB⊥BE,DE⊥AD,垂足分别为B,D,OA=OE.求证:△ABO≌△EDO.
9、如图,在中,是角平分线,,.
(1)求的度数;
(2)若,求的度数.
10、如图,,,E为BC中点,DE平分.
(1)求证:平分;
(2)求证:;
(3)求证:.
-参考答案-
一、单选题
1、C
【分析】
根据三角形具有稳定性进行求解即可.
【详解】
解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
故选C.
【点睛】
本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
2、A
【分析】
利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.
【详解】
解:由作法可得OD=OC=OD′=OC′,CD=C′D′,
所以根据“SSS”可判断△OCD≌△O′C′D′,
所以∠A′OB′=∠AOB.
故选:A.
【点睛】
本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.
3、C
【详解】
由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.
【分析】
解:∵BF=EC,
∴BF+FC=EC+FC,
∴BC=EF,
在△ABC与△DEF中,
,
∴△ABC≌△DEF(SSS),
∴∠ACB=∠DFE,
∴2∠DFE=180°﹣∠FGC,
故选:C.
【点睛】
本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).
4、D
【分析】
可以是底角,也可以是顶角,分情况讨论即可.
【详解】
当角为底角时,底角就是,
当角为等腰三角形的顶角时,底角为,
因此这个等腰三角形的底角为或.
故选:D.
【点睛】
本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
5、B
【分析】
由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
【详解】
解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
∴∠ABD=∠BDC−∠A=50°−30°=20°,
∵BD是△ABC的角平分线,
∴∠DBC=∠ABD=20°,
∵DE∥BC,
∴∠EDB=∠DBC=20°,
故选:B.
【点睛】
本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
6、C
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
【详解】
解:∵AB=AC,D是BC的中点,
∴AD⊥BC,
∵∠B=35°,
∴∠BAD=90°−35°=55°.
故选:C.
【点睛】
本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
7、C
【分析】
根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.
【详解】
解:在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS),
∴∠C=∠B,
∵∠B=25°,
∴∠C=25°,
∵∠A=60°,
∴∠BDC=∠A+∠C=85°,
故选C.
【点睛】
本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
8、B
【分析】
利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.
【详解】
①两直线平行,同位角相等,故错误,是假命题;
②相等的角是对顶角,错误,是假命题;
③直角三角形两个锐角互余,正确,是真命题;
④三个内角相等的三角形是等边三角形,正确,是真命题,
综上所述真命题有2个,
故选:B.
【点睛】
本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.
9、B
【分析】
根据旋转可得,,得.
【详解】
解:,,
,
将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
,,
.
故选:B.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
10、C
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】
解:设第三边长为xcm,根据三角形的三边关系可得:
3-2<x<3+2,
解得:1<x<5,
只有C选项在范围内.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
二、填空题
1、7
【分析】
根据角平分线的定义和平行线的性质证明∠EBD=∠EDB,∠FDC=∠FCD,得到BE=DE,CF=DF,即可求解.
【详解】
解:∵EF∥BC,
∴∠EDB=∠DBC,∠FDC=∠DCB,
又∵BD和CD分别是∠ABC和∠ACB的平分线,
∴∠EBD=∠DBC,∠FCD=∠DCB,
∴∠EBD=∠EDB,∠FDC=∠FCD,
∴BE=DE,CF=DF,
又∵BE=3,CF=4,
∴EF=DE+DF=BE+CF=7.
故答案为:7.
【点睛】
本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.
2、108°108度
【分析】
先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据DC=CA可知∠ADC=∠CAD=2x,再在△ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解.
【详解】
设∠B=x,
∵AB=AC,
∴∠C=∠B=x,
∵AD=DB,
∴∠B=∠DAB=x,
∴∠ADC=∠B+∠DAB=2x,
∵DC=CA,
∴∠ADC=∠CAD=2x,
在△ABC中,x+x+2x+x=180°,
解得:x=36°.
∴∠BAC=108°.
故答案为:108°.
【点睛】
此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理
3、15
【分析】
连接DF,根据AE=ED,BD=3DC,可得 ,, ,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.
【详解】
解:如图,连接DF,
∵AE=ED,
∴ ,,
∵BD=3DC,
∴ ,
设△AEF的面积为x,△BDE的面积为y,则,,,,
∵△ABC的面积等于35,
∴ ,
解得: .
故答案为:15
【点睛】
本题主要考查了与三角形中线有关的面积问题,根据题意得到 ,, ,是解题的关键.
4、
【分析】
先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.
【详解】
解:
∵∠BOC=128°,
∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC+∠ACB=2(∠OBC+∠OCB)=104°,
∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣104°=76°.
故答案为:76°.
【点睛】
本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是是解决本题的关键.
5、①④
【分析】
根据垂直定义可得∠BAC=90°,∠ADC=∠ADB=∠CAE=90°,结合三角形的内角和,然后再根据余角定义和补角定义逐一进行分析即可.
【详解】
解: ,
是的余角;故①符合题意;
,
互为余角,互为余角,
,
互为余角,
所以图中互余的角共有4对,故②不符合题意;
与互补;
∵∠1+∠DAC=90°,∠BAD+∠DAC=90°,
∴∠1=∠BAD,
∵∠BAD+∠DAE=180°,
∴∠1+∠DAE=180°,
∴∠1与∠DAE互补, 故③不符合题意;
,
所以与互补的角有 共3个,故④符合题意;
所以正确的结论有:①④
故答案为:①④
【点睛】
本题考查的是垂直的定义,互余,互补的含义,三角形的内角和定理,掌握“互为余角的两个角之和为 互为补角是两个角之和为”是解本题的关键.
三、解答题
1、见解析
【分析】
根据平行线的性质得出,运用“角角边”证明△AEB≌△CFD即可.
【详解】
证明:∵,
∴,
在△AEB和△CFD中,
∴△AEB≌△CFD,
∴.
【点睛】
本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明.
2、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
【分析】
(1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
(2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
【详解】
解:(1)①补全图形如下图:
②∵∠CAE=∠DAC=,
∴∠BAE=30°+
∴∠FAE=2×(30°+)
∴∠AEF==60°-;
∵∠AMF=∠CAE+∠AEF=+60°-=60°,
故答案是:60°-,60°;
③MF=MA+ME.
证明:在FE上截取GF=ME,连接AG .
∵点D关于直线AC的对称点为E,
∴△ADC ≌△AEC.
∴∠CAE =∠CAD =.
∵∠BAC=30°,
∴∠EAN=30°+.
又∵点E关于直线AB的对称点为F,
∴AB垂直平分EF.
∴AF=AE,∠FAN=∠EAN =30°+,
∴∠F=∠AEF=.
∴∠AMG =.
∵AF=AE,∠F=∠AEF, GF=ME,
∴△AFG ≌△AEM.
∴AG =AM.
又∵∠AMG=,
∴△AGM为等边三角形.
∴MA=MG.
∴MF=MG+GF=MA+ME.
(2),理由如下:
如图1所示,
∵点E与点F关于直线AB对称,
∴∠ANM=90°,NE=NF,
又∵∠NAM=30°,
∴AM=2MN,
∴AM=2NE+2EM =MF+ME,
∴MF=AM-ME;
如图2所示,
∵点E与点F关于直线AB对称,
∴∠ANM=90°,NE=NF,
∵∠NAM=30°,
∴AM=2NM,
∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
∴MF=MA-ME;
综上所述:MF=MA-ME.
【点睛】
本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
3、答案见解析
【分析】
AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
【详解】
解:如图,
……
[答案不唯一]
【点睛】
本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
4、(1)见解析,(2)46
【分析】
(1)根据等腰三角形的性质和角平分线得到∠B=∠ACB=∠BCF,由AD是角平分线,得到BD=CD,证△BDE≌△CDF即可;
(2)根据全等三角形的性质得到DE=DF=DA,根据求得∠DAB,进而求出∠B的度数即可.
【详解】
(1)证明:∵,
∴∠B=∠ACB,
∵CB是的平分线,
∴∠ACB=∠BCF,
∴∠B=∠BCF,
∵AD是角平分线,AB=AC,
∴BD=CD,
∵∠BDE=∠CDF,
∴△BDE≌△CDF(AAS);
∴;
(2)∵△BDE≌△CDF;
∴ED=FD,
∵,
∴ED=AD,
∵,
∴,
∴,
∴∠B=∠ACB=∠BCF=23°,
∴,
故答案为:46.
【点睛】
本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算.
5、(1)∠E=35°;(2)AH⊥BE.理由见解析.
【分析】
(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;
(2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.
【详解】
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵∠BAC=40°,
∴∠ABC=(180°-∠BAC)=70°,
∵BD平分∠ABC,
∴∠CBD=∠ABC=35°,
∵AE∥BC,
∴∠E=∠CBD=35°;
(2)∵BD平分∠ABC,∠E=∠CBD,
∴∠CBD=∠ABD=∠E,
∴AB=AE,
在△ABD和△AEF中,
,
∴△ABD≌△AEF(SAS),
∴AD=AF,
∵点H是DF的中点,
∴AH⊥BE.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.
6、(1)见解析;(2)
【分析】
(1)由旋转的性质可得,,再证明,结合 从而可得结论;
(2)由可得,再利用等腰三角形的性质求解,再利用三角形的内角和定理可得答案.
【详解】
证明:(1)∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,
∴,,
∵,,
∴,
∴,
∴(SAS),
∴.
(2)解:由(1)知
,,,
∴,
∴.
【点睛】
本题考查的是全等三角形的判定与性质,旋转的性质,等腰三角形的性质,掌握“旋转前后的对应边相等,对应角相等”是解本题的关键.
7、(1)见解析;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【分析】
(1)利用SAS证明△ADC≌△BEC,即可证明AD=BE;
(2)证明△CDE为等边三角形,可求得∠BDE=120°;利用全等三角形的性质可求得∠BFD=∠BCA=60°,推出∠DFE=120°;同理可推出∠BFC=∠AFC+∠BFD=120°.
【详解】
(1)证明:等边△ABC中,CA=CB,∠ACB=60°,
∵CE=CD,∠BCE=60°,
∴△ADC≌△BEC(SAS),
∴AD=BE;
(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
∵CE=CD,∠BCE=60°,
∴△CDE为等边三角形,
∴∠CDE=60°,
∴∠BDE=120°;
∵△ADC≌△BEC,
∴∠DAC=∠EBC,
又∠BDF=∠ADC,
∴∠BFD=∠BCA=60°,
∴∠DFE=120°;
同理可求得∠AFC=∠ABC=60°,
∴∠BFC=∠AFC+∠BFD=120°;
综上,等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【点睛】
本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
8、见解析
【分析】
利用AAS即可证明△ABO≌△EDO.
【详解】
证明:∵AB⊥BE,DE⊥AD,
∴∠B=∠D=90°.
在△ABO和△EDO中
,
∴△ABO≌△EDO.
【点睛】
本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
9、
(1);
(2).
【分析】
(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
(2)根据垂直得出,然后根据三角形内角和定理即可得.
(1)
解:∵,,
∴,
∵AD是角平分线,
∴,
∴;
(2)
∵,
∴,
∴,
∴.
【点睛】
题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
10、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
(2)由(1)即可用三线合一定理证明;
(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
【详解】
解:(1)如图所示,延长DE交AB延长线于F,
∵∠B=∠C=90°,
∴AB∥CD,
∴∠CDE=∠F,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠ADF=∠F,
∴AD=AF,
∴△ADF是等腰三角形,
∵E是BC的中点,
∴CE=BE,
∴△CDE≌△BFE(AAS),
∴DE=FE,
∴E是DF的中点,
∴AE平分∠BAD;
(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
∴AE⊥DE;
(3)∵△CDE≌△BFE,
∴CD=BF,
∴AD=AF=AB+BF=AB+CD.
【点睛】
本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共28页。试卷主要包含了如图,点D,三角形的外角和是等内容,欢迎下载使用。
这是一份数学七年级下册第十四章 三角形综合与测试习题,共32页。试卷主要包含了如图,点D等内容,欢迎下载使用。
这是一份数学七年级下册第十四章 三角形综合与测试当堂达标检测题,共27页。试卷主要包含了如图,直线l1l2,被直线l3等内容,欢迎下载使用。