开学活动
搜索
    上传资料 赚现金

    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向训练练习题

    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向训练练习题第1页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向训练练习题第2页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向训练练习题第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共33页。试卷主要包含了如图,能与构成同位角的有等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线定向训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,直线a、b被直线c所截,下列说法不正确的是( )

    A.1与5是同位角 B.3与6是同旁内角
    C.2与4是对顶角 D.5与2是内错角
    2、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )

    A.39° B.41° C.49° D.51°
    3、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )

    A.100° B.140° C.160° D.105°
    4、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )

    A.30° B.40° C.50° D.60°
    5、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的(  )方向.

    A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°
    6、如果同一平面内有三条直线,那么它们交点个数是( )个.
    A.3个 B.1或3个 C.1或2或3个 D.0或1或2或3个
    7、如图,能与构成同位角的有( )

    A.4个 B.3个 C.2个 D.1个
    8、如图,木工用图中的角尺画平行线的依据是( )

    A.垂直于同一条直线的两条直线平行
    B.平行于同一条直线的两条直线平行
    C.同位角相等,两直线平行
    D.经过直线外一点,有且只有一条直线与这条直线平行
    9、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )

    A.80° B.90° C.100° D.110°
    10、如图,若AB∥CD,CD∥EF,那么BCE=( )

    A.180°-2+1 B.180°-1-2 C.2=21 D.1+2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图①,已知,,的交点为,现作如下操作:第一次操作,分别作和的平分线,交点为;第二次操作,分别作和的平分线,交点为;第三次操作,分别作和的平分线,交点为……第次操作,分别作和的平分线,交点为.如图②,若,则的度数是__________.

    2、在数学课上,王老师提出如下问题:
    如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.

    小李同学的作法如下:
    ①连接AB;
    ②过点A作AC⊥直线l于点C;
    则折线段B﹣A﹣C为所求.
    王老师说:小李同学的方案是正确的.
    请回答:该方案最节省材料的依据是垂线段最短和______.

    3、如图,E在AD的延长线上,下列四个条件:①∠3=∠4;②∠C+∠ABC=180°;③∠A=∠CDE;④∠1=∠2,其中能判定AB∥CD的是________.(填序号)

    4、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.

    5、如图,BD平分,,,要使,则______°.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数

    2、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.

    3、如图,已知,,,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).

    理由:C,(已知)
    ,( )
    .( )
    又,(已知)
    =180°.(等量代换)
    ,( )
    .( )
    ,(已知)


    4、完成下列填空:
    已知:如图,,,CA平分;
    求证:.
    证明:∵(已知)
    ∴________( )
    ∵(已知)
    ∴________( )
    又∵CA平分(已知)
    ∴________( )
    ∵(已知)
    ∴_____________=30°( )

    5、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
    (1)如图①,若∠BEF=130°,则∠FGC=   度;
    (2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
    (3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC=   度.

    解:如图②,过点E作EM∥FG,交CD于点M.
    ∵AB∥CD(已知)
    ∴∠BEM=∠EMC(    )
    又∵EM∥FG
    ∴∠FGC=∠EMC(    )
    ∠EFG+∠FEM=180°(    )
    即∠FGC=(    )(等量代换)
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(    )
    又∵∠EFG=90°
    ∴∠FEM=90°
    ∴∠FEB﹣∠FGC=   
    即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
    6、已知:如图,中,点、分别在、上,交于点, ,.

    (1)求证:;
    (2)若平分,,求的度数.
    7、如图,平面上两点C、D在直线AB的同侧,按下列要求画图并填空.
    (1)画直线AC;
    (2)画射线CD;
    (3)画线段BD;
    (4)过点D画垂线段DF⊥AB,垂足为F;
    (5)点D到直线AB的距离是线段   的长.

    8、小明同学遇到这样一个问题:
    如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
    求证:∠BED=∠B+∠D.
    小亮帮助小明给出了该问的证明.
    证明:
    过点E作EF∥AB
    则有∠BEF=∠B
    ∵AB∥CD
    ∴EF∥CD
    ∴∠FED=∠D
    ∴∠BED=∠BEF+∠FED=∠B+∠D
    请你参考小亮的思考问题的方法,解决问题:
    (1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
    (2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.

    9、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:
    (1)过点C画AD的平行线CE;
    (2)过点B画CD的垂线,垂足为F.

    10、完成下列证明:已知,,垂足分别为、,且,求证.
    证明:,(已知),
    ( )
    ( )
    ( )
    又(已知)
    ( )
    ( )


    -参考答案-
    一、单选题
    1、D
    【分析】
    根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.
    【详解】
    解:A、∠1与∠5是同位角,故本选项不符合题意;
    B、∠3与∠6是同旁内角,故本选项不符合题意.
    C、∠2与∠4是对顶角,故本选项不符合题意;
    D、∠5与2不是内错角,故本选项符合题意.
    故选:D.
    【点睛】
    本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
    2、C
    【分析】
    由题意直接根据平行线的性质进行分析计算即可得出答案.
    【详解】
    解:如图,

    ∵AB∥CD,∠C=131°,
    ∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
    ∵AE∥CF,
    ∴∠A=∠C=49°(两直线平行,同位角相等).
    故选:C.
    【点睛】
    本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
    3、B
    【分析】
    根据方位角的含义先求解 再利用角的和差关系可得答案.
    【详解】
    解:如图,标注字母,

    射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,



    故选B
    【点睛】
    本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.
    4、B
    【分析】
    由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.
    【详解】
    解:如图所示:

    ∵∠1=50°,∠ACB=90°,
    ∴∠BCD=180°﹣∠1﹣∠BCD=40°,
    ∵a∥b,
    ∴∠2=∠BCD=40°.
    故选:B.
    【点睛】
    本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
    5、D
    【分析】
    根据方向角的概念,和平行线的性质求解.
    【详解】
    解:如图:

    ∵AF∥DE,
    ∴∠ABE=∠FAB=43°,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠CBD=180°﹣90°﹣43°=47°,
    ∴C地在B地的北偏西47°的方向上.
    故选:D.
    【点睛】
    本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
    6、D
    【分析】
    根据三条直线是否有平行线分类讨论即可.
    【详解】
    解:当三条直线平行时,交点个数为0;
    当三条直线相交于1点时,交点个数为1;
    当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;
    当三条直线互相不平行时,且交点不重合时,交点个数为3;
    所以,它们的交点个数有4种情形.
    故选:D.
    【点睛】
    本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.
    7、B
    【分析】
    根据同位角的定义判断即可;
    【详解】
    如图,与能构成同位角的有:∠1,∠2,∠3.

    故选B.
    【点睛】
    本题主要考查了同位角的判断,准确分析判断是解题的关键.
    8、C
    【分析】
    由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.
    【详解】
    由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.
    故选:C
    【点睛】
    本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.
    9、D
    【分析】
    直接利用对顶角以及平行线的性质分析得出答案.
    【详解】
    解:

    ∵∠1=70°,
    ∴∠1=∠3=70°,
    ∵ABDC,
    ∴∠2+∠3=180°,
    ∴∠2=180°−70°=110°.
    故答案为:D.
    【点睛】
    此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
    10、A
    【分析】
    根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.
    【详解】
    ∵AB∥CD,CD∥EF,
    ∴∠1=∠BCD,∠ECD+∠2=180°,
    ∴BCE=∠BCD+∠ECD=180°-2+1,
    故选A.
    【点睛】
    本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.
    二、填空题
    1、
    【分析】
    先过作,根据,得出,再根据平行线的性质,得出,,进而得到;先根据和的平分线交点为,运用图①的结论,得出;同理可得;根据和的平分线,交点为,得出;据此得到规律,最后求得的度数即可.
    【详解】
    解:如图①,过作,



    ,,


    由此可得:
    如图②,和的平分线交点为,



    和的平分线交点为,




    和的平分线,交点为,





    以此类推,,
    ∴,
    当时,.
    故答案为:.

    【点睛】
    本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
    2、两点之间线段最短
    【分析】
    根据两点之间线段最短即可得到答案.
    【详解】
    解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,
    故答案为:两点之间线段最短.
    【点睛】
    本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键.
    3、②③④
    【分析】
    根据平行线的判定定理,逐一判断,即可得到答案.
    【详解】
    ∵,
    ∴,
    ∴①不符合题意;
    ∵∠C+∠ABC=180°,
    ∴AB∥CD;
    ∴②符合题意;
    ∵∠A=∠CDE,
    ∴AB∥CD;
    ∴③符合题意;
    ∵∠1=∠2,
    ∴AB∥CD.
    故答案为:②③④.
    【点睛】
    本题主要考查平行线的判定定理,掌握平行线的判定定理是解题的关键.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
    4、18°度
    【分析】
    根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.
    【详解】
    解:∵∠COE是直角,
    ∴∠COE=90°,
    ∵∠COF=36°,
    ∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,
    ∵OF平分∠AOE,
    ∴∠AOF=∠EOF=54°,
    ∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,
    ∴∠BOD=∠AOC=18°.
    故答案为:18°.
    【点睛】
    本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.
    5、20
    【分析】
    利用角平分线的定义求解再由可得再列方程求解即可.
    【详解】
    解: BD平分,,

    由,
    而,

    解得:
    所以当时,,
    故答案为:
    【点睛】
    本题考查的是角平分线的定义,平行线的判定与性质,一元一次方程的应用,掌握平行线的判定与性质是解本题的关键.
    三、解答题
    1、∠2=115°,∠3=65°,∠4=115°
    【分析】
    根据对顶角相等和邻补角定义可求出各个角.
    【详解】
    解:∵∠1=65°,∠1=∠3,
    ∴∠3=65°,
    ∵∠1=65°,∠1+∠2=180°,
    ∴∠2=180°-65°=115°,
    又∵∠2=∠4,
    ∴∠4=115°.
    【点睛】
    本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.
    2、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.
    【分析】
    三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.
    【详解】
    (1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.
    (2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.
    (3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.
    以第一个命题为例证明如下:
    ∵AB∥DE,
    ∴∠B=∠DOC.
    ∵BC∥EF,
    ∴∠DOC=∠E,
    ∴∠B=∠E.
    【点睛】
    本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.
    3、GD;AC;同位角相等,两直线平行;;两直线平行,内错角相等;;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC
    【分析】
    结合图形,根据平行线的判定和性质逐一进行填空即可.
    【详解】
    解:,已知
    ,同位角相等,两直线平行
    两直线平行,内错角相等

    又,(已知)
    (等量代换)
    ,同旁内角互补,两直线平行)
    (两直线平行,同位角相等)
    ,(已知)



    【点睛】
    本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.
    4、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等
    【分析】
    由AB与CD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.
    【详解】
    证明:∵AB∥CD,(已知)
    ∴∠B+∠BCD=180°,(两直线平行同旁内角互补)
    ∵∠B=120°(已知),
    ∴∠BCD=60°.
    又CA平分∠BCD(已知),
    ∴∠2=30°,(角平分线定义).
    ∵AB∥CD(已知),
    ∴∠1=∠2=30°.(两直线平行内错角相等).
    故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.
    【点睛】
    此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.
    5、(1)40°;(2)见解析;(3)70°
    【分析】
    (1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
    (2)根据题目补充理由和相关结论即可;
    (3)类似(2)中的方法求解即可.
    【详解】
    解:(1)过点F作FN∥AB,
    ∵FN∥AB,∠FEB=130°,
    ∴∠EFN+∠FEB=180°,
    ∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
    ∵∠EFG=90°,
    ∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
    ∵AB∥CD,
    ∴FN∥CD,
    ∴∠FGC=∠NFG=40°.
    故答案为:40°;

    (2)如图②,过点E作EM∥FG,交CD于点M.
    ∵AB∥CD(已知)
    ∴∠BEM=∠EMC(两直线平行,内错角相等)
    又∵EM∥FG
    ∴∠FGC=∠EMC(两直线平行,同位角相等)
    ∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
    即∠FGC=(∠BEM)(等量代换)
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
    又∵∠EFG=90°
    ∴∠FEM=90°
    ∴∠FEB﹣∠FGC=90°
    故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
    (3)过点E作EH∥FG,交CD于点H.
    ∵AB∥CD
    ∴∠BEH=∠EHC
    又∵EM∥FG
    ∴∠FGC=∠EHC
    ∠EFG+∠FEH=180°
    即∠FGC=∠BEH
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
    又∵∠EFG=110°
    ∴∠FEH=70°
    ∴∠FEB﹣∠FGC=70°
    故答案为:70°.

    【点睛】
    本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
    6、(1)见解析;(2)72°
    【分析】
    (1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;
    (2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.
    【详解】
    解:(1)∵,∠2+∠DFE=180°,
    ∴∠3=∠DFE,
    ∴EF//AB,
    ∴∠ADE=∠1,
    又∵,
    ∴∠ADE=∠B,
    ∴DE//BC,
    (2)∵平分,
    ∴∠ADE=∠EDC,
    ∵DE//BC,
    ∴∠ADE=∠B,

    ∴∠5+∠ADE+∠EDC==180°,
    解得:,
    ∴∠ADC=2∠B=72°,
    ∵EF//AB,
    ∴∠2=∠ADC=180°-108°=72°,
    【点睛】
    本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    7、(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)DF
    【分析】
    (1)连接AC并向两端延长即可;
    (2)连接CD并延长CD即可;
    (3)连接BD即可;
    (4)过D作线段DF⊥AB,垂足为F;
    (5)根据垂线段的长度是点到直线的距离解答即可.
    【详解】
    解:(1)直线AC如图所示;
    (2)射线CD如图所示;
    (3)线段BD如图所示;
    (4)垂线段DF如图所示;
    (5)垂线段DF的长是点D到直线AB的距离,
    故答案为:DF.

    【点睛】
    本题考查画直线、射线、线段、垂线段、点到直线的距离,熟练掌握基本作图方法,理解点到直线的距离的定义是解答的关键.
    8、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
    【分析】
    (1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
    (2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
    【详解】
    解:(1)如图所示,过点P作PG∥l1,
    ∴∠APG=∠PAC=15°,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG+∠BPG=55°;

    (2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
    如图1所示,当P在DC延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;

    如图2所示,当P在CD延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
    ∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.

    【点睛】
    本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
    9、(1)见解析;(2)见解析
    【分析】
    (1)根据要求作出图形即可.
    (2)根据要求作出图形即可.
    【详解】
    解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,
    所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,
    如图,直线CE即为所求作.
    (2)根据题意得:CD是长为6,宽为3的长方形的对角线,
    所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,
    如图,直线BF即为所求作.

    【点睛】
    本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.
    10、见详解
    【分析】
    根据垂直的定义及平行线的性质与判定可直接进行求解.
    【详解】
    证明:,(已知),
    (垂直的定义)
    (同位角相等,两直线平行)
    (两直线平行,同位角相等)
    又(已知)
    (等量代换)
    (内错角相等,两直线平行).
    【点睛】
    本题主要考查垂直的定义及平行线的性质与判定,熟练掌握垂直的定义及平行线的性质与判定是解题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时作业:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时作业,共32页。试卷主要包含了如图所示,直线l1∥l2,点A,下列说法中正确的有个等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共29页。试卷主要包含了下列说法中,正确的是,下列语句中等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题,共32页。试卷主要包含了如图,能判定AB∥CD的条件是,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map