初中数学北京课改版八年级下册第十四章 一次函数综合与测试一课一练
展开京改版八年级数学下册第十四章一次函数达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为( )
A. B. C. D.
2、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)
3、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )
A.正东方向 B.正西方向 C.正南方向 D.正北方向
4、正比例函数的函数值随的增大而减小,则一次函数的图象大致是( )
A. B. C. D.
5、点P的坐标为(﹣3,2),则点P位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
7、已知一次函数与一次函数中,函数、与自变量x的部分对应值分别如表1、表2所示:
表1:
x
…
0
1
…
…
3
4
…
表2:
x
…
0
1
…
…
5
4
3
…
则关于x的不等式的解集是( )
A. B. C. D.
8、已知一次函数y=kx+b的图象如图所示,则一次函数y=﹣bx+k的图象大致是( )
A. B. C. D.
9、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )
A. B. C. D.
10、关于函数有下列结论,其中正确的是( )
A.图象经过点
B.若、在图象上,则
C.当时,
D.图象向上平移1个单位长度得解析式为
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知y与成正比例,且当时,,则y与x之间的函数关系式为______________.
2、河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:
行驶路程s(千米)
0
50
100
150
200
…
剩余油量Q(升)
40
35
30
25
20
…
则该汽车每行驶100千米的耗油量为 _____升.
3、图象经过点A(-2,6)的正比例函数y=kx,则k为 _________ .
4、一次函数y=kx+b(k≠0)的图象是____,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向____平移,当b<0时,向____平移).
5、如图,已知直线:与直线:相交于点:,则关于x的不等式的解集为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图1中线段AB所示.慢车离甲地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图1中线段AC所示.根据图象解答下列问题.
(1)甲、乙两地之间的距离为_____km,线段AB的解析式为_____.两车在慢车出发_____小时后相遇;
(2)设慢车行驶时间x(0≤x≤6,单位:h),快、慢车之间的距离为S(km).
①当两车之间距离S=300km时,求x的值;
②图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据).
2、王亮家距离李刚家6.5千米,星期天王亮骑车去李刚家玩,中途自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到李刚家.王亮的行驶路程(千米)与所用时间(分钟)之间的函数图象如图所示:
(1)求王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;
(2)求当王亮距离李刚家1.5千米时,的值.
3、已知y与x﹣1成正比例,且当x=3时,y=4
(1)求出y与x之间的函数解析式;
(2)当x=1时,求y的值.
4、已知,一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,正方形BOCD的顶点D在第二象限内,直线DE交AB于点E,交x轴于点F,
(1)求点D的坐标和AB的长;
(2)若△BDE≌△AFE,求点E的坐标;
(3)若点P、点Q是直线BD、直线DF上的一个动点,当△APQ是以AP为直角边的等腰直角三角形时,直接写出Q点的坐标.
5、甲、乙两人在某天不约而同的进行一次徒步活动,已知A、B两地相距10千米,甲先出发,从A地匀速步行到B地,乙晚出发半小时,从B地出发匀速步行到A地.两人相向而行.图中l1、l2分别表示两人离B地的距离y(千米)与时间x(小时)的关系.根据图象解答下列问题:
(1)求y甲、y乙关于x的函数表达式;
(2)在甲出发_______小时后,甲、乙相遇;相遇时离B地_______千米;
(3)甲出发_______小时后,甲、乙两人相距5千米.
-参考答案-
一、单选题
1、D
【解析】
【分析】
由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.
【详解】
解:∵一次函数y=-x+2中,
令x=0得:y=2;令y=0,解得x=5,
∴B的坐标是(0,2),A的坐标是(5,0).
若∠BAC=90°,如图1,作CE⊥x轴于点E,
∵∠BAC=90°,
∴∠OAB+∠CAE=90°,
又∵∠CAE+∠ACE=90°,
∴∠ACE=∠BAO.
在△ABO与△CAE中,,
∴△ABO≌△CAE(AAS),
∴OB=AE=2,OA=CE=5,
∴OE=OA+AE=2+5=7.
则C的坐标是(7,5).
设直线BC的解析式是y=kx+b,
根据题意得:,解得,
∴直线BC的解析式是y=x+2.
故选:D.
【点睛】
本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.
2、A
【解析】
【分析】
由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
【详解】
解:由题意可知BO=CO,
∵又AB=AC,
∴AO⊥BC,
∴点A在y轴上,
∴选项A符合题意,
B选项三点共线,不能构成三角形,不符合题意;
选项C、D都不在y轴上,不符合题意;
故选:A.
【点睛】
本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
3、B
【解析】
【分析】
根据二人向同一方向走的距离可知二人的方向关系,解答即可.
【详解】
解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.
【点睛】
本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.
4、C
【解析】
【分析】
因为正比例函数的函数值随的增大而减小,可以判断;再根据判断出的图象的大致位置.
【详解】
解:正比例函数的函数值随的增大而减小,
,
一次函数的图象经过一、三、四象限.
故选C.
【点睛】
主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.
5、B
【解析】
【分析】
根据平面直角坐标系中四个象限中点的坐标特点求解即可.
【详解】
解:∵点P的坐标为(﹣3,2),
∴则点P位于第二象限.
故选:B.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
6、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
7、D
【解析】
【分析】
用待定系数法求出和的表达式,再解不等式即可得出答案.
【详解】
由表得:,在一次函数上,
∴,
解得:,
∴,
,在一次函数上,
∴,
解得:,
∴,
∴为,
解得:.
故选:D.
【点睛】
本题考查用待定系数法求一次函数解析式以及解一元一次不等式,掌握待定系数法求解析式是解题的关键.
8、D
【解析】
【分析】
根据题目中的一次函数图像判断出、的正负,进而确定y=﹣bx+k的参数正负,最后根据一次函数图像与参数的关系,找出根据符题意的图像即可.
【详解】
解:由题意及图像可知:,,
y=﹣bx+k中的,,
由一次函数图像与参数的关系可知:D选项符合条件,
故选:D.
【点睛】
本题主要是考查了一次函数图像与参数的关系,熟练掌握参数的正负与函数图像的关系,是解决该题的关键.
9、D
【解析】
【分析】
利用x=-1时,求函数值进行一一检验是否为1即可
【详解】
解: 当x=-1时,,图象不过点,选项A不合题意;
当x=-1时,,图象不过点,选项B不合题意;
当x=-1时,,图象不过点,选项C不合题意;
当x=-1时,,图象过点,选项D合题意;
故选择:D.
【点睛】
本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.
10、D
【解析】
【分析】
根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项.
【详解】
解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;
B、∵,∴y随x的增大而减小,若、在图象上,则有,即,故不符合题意;
C、当y=0时,则有-2x-2=0,解得x=-1,所以当x>-1时,y<0,则当时,,故不符合题意;
D、图象向上平移1个单位长度得解析式为,正确,故符合题意;
故选D.
【点睛】
本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
二、填空题
1、##
【解析】
【分析】
根据题意,可设 ,将时,,代入即可求解.
【详解】
解:根据题意,可设 ,
∵当时,,
∴ ,解得: ,
∴y与x之间的函数关系式为 .
故答案为:
【点睛】
本题主要考查了用待定系数法求函数解析式,正比函数的定义,根据题意 是解题的关键.
2、10
【解析】
【分析】
根据表格中两个变量的变化关系得出函数关系式即可.
【详解】
解:根据表格中两个变量的变化关系可知,
行驶路程每增加50千米,剩余油量就减少5升,
所以行驶路程每增加100千米,剩余油量就减少10升,
故答案为:10.
【点睛】
本题考查函数的表示方法,理解表格中两个变量的变化规律是正确解答的前提.
3、-3
【解析】
【分析】
把点A(-2,6)代入正比例函数的关系式为y=kx,即可求出答案.
【详解】
解:将点A(-2,6)代入正比例函数的关系式为y=kx
则有6=-2k
解得:k=-3,
故答案为:-3.
【点睛】
本题考查了正比例函数的解析式的问题,做题的关键是直接将点的坐标代入解析式,计算即可.
4、 一条直线 上 下
【解析】
【分析】
根据一次函数的性质填写即可.
【详解】
解:∵函数为一次函数,
∴一次函数y=kx+b(k≠0)的图象是一条直线,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向上平移,当b<0时,向下平移).
故答案为:①一条直线 ②上 ③下.
【点睛】
本题考查了一次函数的性质,做题的关键是牢记性质准确填写.
5、
【解析】
【分析】
观察函数图象可得当时,直线直线:在直线:的下方,于是得到不等式的解集.
【详解】
解:根据图象可知,不等式的解集为.
故答案为:.
【点睛】
本题考查了一次函数的交点问题及不等式,解题的关键是掌握数形结合的解题方法.
三、解答题
1、(1)450;y1=﹣150x+450,2;(2)①或4;②见解析.
【解析】
【分析】
(1)由一次函数的图象可得甲、乙两地之间的距离为450km,设线段AB的解析式为y1=k1x+b1,利用待定系数法可得出AB的解析式,根据路程、时间和速度的关系即可得答案;
(2)根据题意得出函数解析式为S=,①把S=300代入解析式分别求出x的值即可;②根据题意得出函数解析式,画出函数的图象即可.
【详解】
解:(1)由图象可得:甲、乙两地之间的距离为450km;
设线段AB的解析式为y1=k1x+b1,
∵A(0,450),B(3,0),
∴,
解得:,
∴线段AB的解析式为y1=450﹣150x(0≤x≤3);
设两车在慢车出发x小时后相遇,
()x=450,
解得:x=2,
答:两车在慢车出发2小时后相遇.
故答案为:450;y1=﹣150x+450;2;
(2),
根据题意得出S与慢车行驶时间x(h)的函数关系式如下:S=,
①当0≤x<2时,S=450x=300,
解得:x=,
当2≤x<3时,S=x=300,
解得:x=(舍去),
当3≤x≤6时,S=75x=300,
解得:x=4,
综上所述:x的值为或4.
②其图象为折线图如下:
【点睛】
本题考查一次函数的应用及待定系数法求一次函数解析式,从函数图象中正确得出所需信息是解题关键.
2、(1)王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=0.3t-2.5;(2)t=7.5.
【解析】
【分析】
(1)根据待定系数法求解析式设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=mt+n,函数过点(15,2)(30,6.5)代入得方程组15m+n=230m+n=6.5,然后解方程组即可;
(2)利用待定系数法求正比例函数解析式,再根据函数值解方程即可.
【详解】
解:(1)设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=mt+n
函数过点(15,2)(30,6.5)代入得:
15m+n=230m+n=6.5,
解得:m=0.3n=-2.5,
∴王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=0.3t-2.5;
(2)设修车之前解析式为s=kt,代入(10,2)得:
2=10k,
解得k=15,
∴s=15t,
当s=1.5时,15t=1.5,
解得t=7.5分.
【点睛】
本题考查一次函数的应用,从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组,掌握从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组是解题关键.
3、(1)y=2x﹣2;(2)0
【解析】
【分析】
(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;
(2)利用(1)中关系式求出自变量为1时对应的函数值即可.
【详解】
解:(1)设y=k(x﹣1),
把x=3,y=4代入得(3﹣1)k=4,解得k=2,
所以y=2(x﹣1),
即y=2x﹣2;
(2)当x=1时,y=2×1﹣2=0.
【点睛】
本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
4、(1)(-4,4),AB= ;(2)(-1,2);(3)(, )、(-6, )、(14,-8)、(2,0)
【解析】
【分析】
(1)分别令一次函数解析式中的x=0、y=0,求出y、x,据此可得点A、B的坐标,求出AB的值,由正方形的性质可得点D的坐标;
(2)由全等三角形的性质可得AF=BD=4,求出直线DF的解析式,然后联立直线AB的解析式可得点E的坐标;
(3)分情况讨论:当点P在线段BD上时,利用函数解析式可求出点F的坐标,可证得AF=AP,可知点Q与点F重合,即可得到点Q的坐标;如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,易证△APH≌△PMQ,BH=2=AO,利用全等三角形的性质可证得QM=HP,AH=PM=4,利用函数解析式表示出点Q(a,),可表示出MQ,PH的长,根据PB的长,建立关于a的方程,解方程取出a的值,然后求出点Q的纵坐标,即可得到点Q的坐标;如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,设点Q(a,),易证△PHQ≌△APM,利用全等三角形的性质分别表示出BH,OM的长QH的长,根据QH的长建立关于a的方程,解方程求出a的值,即可得到点Q的坐标.
【详解】
解:(1)一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,
令x=0,y=4;y=0,x=-2
∴点A、B的坐标分别为:(-2,0)、(0,4),
∴OA=2,OB=4
由勾股定理得,AB= ,
∵四边形BOCD是正方形
∴BD=OB=CD=OC=4,
∴D的坐标为(-4,4)
(2)解:∵△BDE≌△AFE,
∴AF=BD=4,
∴OF=2
∴F(2,0),
设直线DF的解析式为
把D(-4,4),F(2,0)代入得,
解得,
∴直线DF的解析式为
联立方程组
解得,
∴点E的坐标为(-1,2)
(3)如图,
当点P在线段BD上时
∵点A(-2,0),点F(2,0)
∴AF=2-(-2)=4,
当点Q与点F重合时,DA⊥BD于点P,
∴DA=AF=4,∠DAF=90°,
∴点Q(2,0);
如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,
易证△APH≌△PMQ,BH=2=AO
∴QM=HP,AH=PM=4,
设点Q(a,)
∴;
∴
解之:a=14
∴当a=14时,y==-8,
∴点Q(14,-8);
如图,当点Q在FD的延长线上时,∠QAP=90°,过点Q作QH⊥x轴于点H,过点P作PM⊥x轴于点M,
易证△AQH≌△APM,
∴QH=AM,PM=AH=4,
∵OA=2,
∴OH=4+2=6,
∴点P的横坐标为-6
当x=-6时y,
∴点Q;
如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,
设点Q(a,)
易证△PHQ≌△APM,
∴PM=PH=4,AM=QH,
∴BH=-a,OM=-a-4,
∴AM=QH=2-(-a-4)=a+6,QH=
∴
解之:
∴
∴点Q
∴点Q的坐标为:或或(14,-8)或(2,0).
【点睛】
本题属于一次函数综合题,考查了两一次函数图象相交或平行问题,三角形全等及其性质,正方形的性质,一次函数图象与坐标轴交点问题,等腰直角三角形等知识,解题的关键是熟练掌握基本知识.
5、(1)y甲=-5x+10,y乙=4x-2;(2)相遇时甲离B地为km;(3)或.
【解析】
【分析】
(1)找出直线l1、l2经过的两点坐标,两用待定系数法求出直线解析式即可;
(2)联立方程组,求出方程组的解即可;
(3)分相遇前和相遇后相距5千米列出方程求解即可.
【详解】
解:(1)设直线l1的解析式为
∵直线l1过点(2,0),(0,10)
∴代入解析式得,
解得,
∴直线l1的解析式为
设直线l2的解析式为
∵直线l2过点(0.5,0),(3,10)
∴代入解析式得,
解得,
∴直线l2的解析式为.
(2)由图象可知甲速度为10÷2=5km/h,乙速度为10÷(3-0.5)=4km/h,
设甲出发后x小时相遇,则乙行驶(x-0.5)小时,根据题意得
4(x-0.5)+5x=10,
解得x=.
当x=时,y甲=-5×+10=,
∴相遇时甲离B地为km.
故答案为:,
(3)由题意知:①或②
解得,或
所以,甲出发或小时后,甲、乙两人相距5千米.
故答案为:或.
【点睛】
本题主要考查了一次函数的应用问题,在解题时要根据图形列出方程是解题的关键.
初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题,共27页。试卷主要包含了已知一次函数y=,下面哪个点不在函数的图像上.,,两地相距80km,甲等内容,欢迎下载使用。
数学八年级下册第十四章 一次函数综合与测试同步练习题: 这是一份数学八年级下册第十四章 一次函数综合与测试同步练习题,共25页。试卷主要包含了函数的图象如下图所示等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后练习题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后练习题,共24页。