终身会员
搜索
    上传资料 赚现金
    2022年京改版八年级数学下册第十四章一次函数达标测试练习题
    立即下载
    加入资料篮
    2022年京改版八年级数学下册第十四章一次函数达标测试练习题01
    2022年京改版八年级数学下册第十四章一次函数达标测试练习题02
    2022年京改版八年级数学下册第十四章一次函数达标测试练习题03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试一课一练

    展开
    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共27页。试卷主要包含了点P的坐标为,已知一次函数与一次函数中,函数等内容,欢迎下载使用。

    京改版八年级数学下册第十四章一次函数达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为(  )

    A. B. C. D.
    2、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
    A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)
    3、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )
    A.正东方向 B.正西方向 C.正南方向 D.正北方向
    4、正比例函数的函数值随的增大而减小,则一次函数的图象大致是( )
    A. B. C. D.
    5、点P的坐标为(﹣3,2),则点P位于( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    6、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为(  )

    A.-1008 B.-1010 C.1012 D.-1012
    7、已知一次函数与一次函数中,函数、与自变量x的部分对应值分别如表1、表2所示:
    表1:
    x


    0
    1




    3
    4


    表2:
    x


    0
    1



    5
    4
    3


    则关于x的不等式的解集是( )
    A. B. C. D.
    8、已知一次函数y=kx+b的图象如图所示,则一次函数y=﹣bx+k的图象大致是( )

    A. B. C. D.
    9、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )
    A. B. C. D.
    10、关于函数有下列结论,其中正确的是( )
    A.图象经过点
    B.若、在图象上,则
    C.当时,
    D.图象向上平移1个单位长度得解析式为
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知y与成正比例,且当时,,则y与x之间的函数关系式为______________.
    2、河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:
    行驶路程s(千米)
    0
    50
    100
    150
    200

    剩余油量Q(升)
    40
    35
    30
    25
    20

    则该汽车每行驶100千米的耗油量为 _____升.
    3、图象经过点A(-2,6)的正比例函数y=kx,则k为 _________ .
    4、一次函数y=kx+b(k≠0)的图象是____,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向____平移,当b<0时,向____平移).
    5、如图,已知直线:与直线:相交于点:,则关于x的不等式的解集为 _____.

    三、解答题(5小题,每小题10分,共计50分)
    1、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图1中线段AB所示.慢车离甲地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图1中线段AC所示.根据图象解答下列问题.
    (1)甲、乙两地之间的距离为_____km,线段AB的解析式为_____.两车在慢车出发_____小时后相遇;
    (2)设慢车行驶时间x(0≤x≤6,单位:h),快、慢车之间的距离为S(km).
    ①当两车之间距离S=300km时,求x的值;
    ②图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据).

    2、王亮家距离李刚家6.5千米,星期天王亮骑车去李刚家玩,中途自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到李刚家.王亮的行驶路程(千米)与所用时间(分钟)之间的函数图象如图所示:

    (1)求王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;
    (2)求当王亮距离李刚家1.5千米时,的值.
    3、已知y与x﹣1成正比例,且当x=3时,y=4
    (1)求出y与x之间的函数解析式;
    (2)当x=1时,求y的值.
    4、已知,一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,正方形BOCD的顶点D在第二象限内,直线DE交AB于点E,交x轴于点F,

    (1)求点D的坐标和AB的长;
    (2)若△BDE≌△AFE,求点E的坐标;
    (3)若点P、点Q是直线BD、直线DF上的一个动点,当△APQ是以AP为直角边的等腰直角三角形时,直接写出Q点的坐标.
    5、甲、乙两人在某天不约而同的进行一次徒步活动,已知A、B两地相距10千米,甲先出发,从A地匀速步行到B地,乙晚出发半小时,从B地出发匀速步行到A地.两人相向而行.图中l1、l2分别表示两人离B地的距离y(千米)与时间x(小时)的关系.根据图象解答下列问题:
    (1)求y甲、y乙关于x的函数表达式;
    (2)在甲出发_______小时后,甲、乙相遇;相遇时离B地_______千米;
    (3)甲出发_______小时后,甲、乙两人相距5千米.


    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.
    【详解】
    解:∵一次函数y=-x+2中,
    令x=0得:y=2;令y=0,解得x=5,
    ∴B的坐标是(0,2),A的坐标是(5,0).
    若∠BAC=90°,如图1,作CE⊥x轴于点E,
    ∵∠BAC=90°,
    ∴∠OAB+∠CAE=90°,
    又∵∠CAE+∠ACE=90°,
    ∴∠ACE=∠BAO.
    在△ABO与△CAE中,,
    ∴△ABO≌△CAE(AAS),
    ∴OB=AE=2,OA=CE=5,
    ∴OE=OA+AE=2+5=7.
    则C的坐标是(7,5).
    设直线BC的解析式是y=kx+b,
    根据题意得:,解得,
    ∴直线BC的解析式是y=x+2.
    故选:D.

    【点睛】
    本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.
    2、A
    【解析】
    【分析】
    由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
    【详解】
    解:由题意可知BO=CO,
    ∵又AB=AC,
    ∴AO⊥BC,
    ∴点A在y轴上,
    ∴选项A符合题意,
    B选项三点共线,不能构成三角形,不符合题意;
    选项C、D都不在y轴上,不符合题意;
    故选:A.
    【点睛】
    本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
    3、B
    【解析】
    【分析】
    根据二人向同一方向走的距离可知二人的方向关系,解答即可.
    【详解】
    解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.

    【点睛】
    本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.
    4、C
    【解析】
    【分析】
    因为正比例函数的函数值随的增大而减小,可以判断;再根据判断出的图象的大致位置.
    【详解】
    解:正比例函数的函数值随的增大而减小,

    一次函数的图象经过一、三、四象限.
    故选C.
    【点睛】
    主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.
    5、B
    【解析】
    【分析】
    根据平面直角坐标系中四个象限中点的坐标特点求解即可.
    【详解】
    解:∵点P的坐标为(﹣3,2),
    ∴则点P位于第二象限.
    故选:B.
    【点睛】
    此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
    6、C
    【解析】
    【分析】
    首先确定角码的变化规律,利用规律确定答案即可.
    【详解】
    解:∵各三角形都是等腰直角三角形,
    ∴直角顶点的纵坐标的长度为斜边的一半,
    A3(0,0),A7(2,0),A11(4,0)…,
    ∵2021÷4=505余1,
    ∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
    ∴A2021的坐标为(1012,0).
    故选:C
    【点睛】
    本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
    7、D
    【解析】
    【分析】
    用待定系数法求出和的表达式,再解不等式即可得出答案.
    【详解】
    由表得:,在一次函数上,
    ∴,
    解得:,
    ∴,
    ,在一次函数上,
    ∴,
    解得:,
    ∴,
    ∴为,
    解得:.
    故选:D.
    【点睛】
    本题考查用待定系数法求一次函数解析式以及解一元一次不等式,掌握待定系数法求解析式是解题的关键.
    8、D
    【解析】
    【分析】
    根据题目中的一次函数图像判断出、的正负,进而确定y=﹣bx+k的参数正负,最后根据一次函数图像与参数的关系,找出根据符题意的图像即可.
    【详解】
    解:由题意及图像可知:,,
    y=﹣bx+k中的,,
    由一次函数图像与参数的关系可知:D选项符合条件,
    故选:D.
    【点睛】
    本题主要是考查了一次函数图像与参数的关系,熟练掌握参数的正负与函数图像的关系,是解决该题的关键.
    9、D
    【解析】
    【分析】
    利用x=-1时,求函数值进行一一检验是否为1即可
    【详解】
    解: 当x=-1时,,图象不过点,选项A不合题意;
    当x=-1时,,图象不过点,选项B不合题意;
    当x=-1时,,图象不过点,选项C不合题意;
    当x=-1时,,图象过点,选项D合题意;
    故选择:D.
    【点睛】
    本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.
    10、D
    【解析】
    【分析】
    根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项.
    【详解】
    解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;
    B、∵,∴y随x的增大而减小,若、在图象上,则有,即,故不符合题意;
    C、当y=0时,则有-2x-2=0,解得x=-1,所以当x>-1时,y<0,则当时,,故不符合题意;
    D、图象向上平移1个单位长度得解析式为,正确,故符合题意;
    故选D.
    【点睛】
    本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
    二、填空题
    1、##
    【解析】
    【分析】
    根据题意,可设 ,将时,,代入即可求解.
    【详解】
    解:根据题意,可设 ,
    ∵当时,,
    ∴ ,解得: ,
    ∴y与x之间的函数关系式为 .
    故答案为:
    【点睛】
    本题主要考查了用待定系数法求函数解析式,正比函数的定义,根据题意 是解题的关键.
    2、10
    【解析】
    【分析】
    根据表格中两个变量的变化关系得出函数关系式即可.
    【详解】
    解:根据表格中两个变量的变化关系可知,
    行驶路程每增加50千米,剩余油量就减少5升,
    所以行驶路程每增加100千米,剩余油量就减少10升,
    故答案为:10.
    【点睛】
    本题考查函数的表示方法,理解表格中两个变量的变化规律是正确解答的前提.
    3、-3
    【解析】
    【分析】
    把点A(-2,6)代入正比例函数的关系式为y=kx,即可求出答案.
    【详解】
    解:将点A(-2,6)代入正比例函数的关系式为y=kx
    则有6=-2k
    解得:k=-3,
    故答案为:-3.
    【点睛】
    本题考查了正比例函数的解析式的问题,做题的关键是直接将点的坐标代入解析式,计算即可.
    4、 一条直线 上 下
    【解析】
    【分析】
    根据一次函数的性质填写即可.
    【详解】
    解:∵函数为一次函数,
    ∴一次函数y=kx+b(k≠0)的图象是一条直线,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向上平移,当b<0时,向下平移).
    故答案为:①一条直线 ②上 ③下.
    【点睛】
    本题考查了一次函数的性质,做题的关键是牢记性质准确填写.
    5、
    【解析】
    【分析】
    观察函数图象可得当时,直线直线:在直线:的下方,于是得到不等式的解集.
    【详解】
    解:根据图象可知,不等式的解集为.
    故答案为:.
    【点睛】
    本题考查了一次函数的交点问题及不等式,解题的关键是掌握数形结合的解题方法.
    三、解答题
    1、(1)450;y1=﹣150x+450,2;(2)①或4;②见解析.
    【解析】
    【分析】
    (1)由一次函数的图象可得甲、乙两地之间的距离为450km,设线段AB的解析式为y1=k1x+b1,利用待定系数法可得出AB的解析式,根据路程、时间和速度的关系即可得答案;
    (2)根据题意得出函数解析式为S=,①把S=300代入解析式分别求出x的值即可;②根据题意得出函数解析式,画出函数的图象即可.
    【详解】
    解:(1)由图象可得:甲、乙两地之间的距离为450km;
    设线段AB的解析式为y1=k1x+b1,
    ∵A(0,450),B(3,0),
    ∴,
    解得:,
    ∴线段AB的解析式为y1=450﹣150x(0≤x≤3);
    设两车在慢车出发x小时后相遇,
    ()x=450,
    解得:x=2,
    答:两车在慢车出发2小时后相遇.
    故答案为:450;y1=﹣150x+450;2;
    (2),
    根据题意得出S与慢车行驶时间x(h)的函数关系式如下:S=,
    ①当0≤x<2时,S=450x=300,
    解得:x=,
    当2≤x<3时,S=x=300,
    解得:x=(舍去),
    当3≤x≤6时,S=75x=300,
    解得:x=4,
    综上所述:x的值为或4.
    ②其图象为折线图如下:

    【点睛】
    本题考查一次函数的应用及待定系数法求一次函数解析式,从函数图象中正确得出所需信息是解题关键.
    2、(1)王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=0.3t-2.5;(2)t=7.5.
    【解析】
    【分析】
    (1)根据待定系数法求解析式设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=mt+n,函数过点(15,2)(30,6.5)代入得方程组15m+n=230m+n=6.5,然后解方程组即可;
    (2)利用待定系数法求正比例函数解析式,再根据函数值解方程即可.
    【详解】
    解:(1)设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=mt+n
    函数过点(15,2)(30,6.5)代入得:
    15m+n=230m+n=6.5,
    解得:m=0.3n=-2.5,
    ∴王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=0.3t-2.5;
    (2)设修车之前解析式为s=kt,代入(10,2)得:
    2=10k,
    解得k=15,
    ∴s=15t,
    当s=1.5时,15t=1.5,
    解得t=7.5分.
    【点睛】
    本题考查一次函数的应用,从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组,掌握从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组是解题关键.
    3、(1)y=2x﹣2;(2)0
    【解析】
    【分析】
    (1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;
    (2)利用(1)中关系式求出自变量为1时对应的函数值即可.
    【详解】
    解:(1)设y=k(x﹣1),
    把x=3,y=4代入得(3﹣1)k=4,解得k=2,
    所以y=2(x﹣1),
    即y=2x﹣2;
    (2)当x=1时,y=2×1﹣2=0.
    【点睛】
    本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
    4、(1)(-4,4),AB= ;(2)(-1,2);(3)(, )、(-6, )、(14,-8)、(2,0)
    【解析】
    【分析】
    (1)分别令一次函数解析式中的x=0、y=0,求出y、x,据此可得点A、B的坐标,求出AB的值,由正方形的性质可得点D的坐标;
    (2)由全等三角形的性质可得AF=BD=4,求出直线DF的解析式,然后联立直线AB的解析式可得点E的坐标;
    (3)分情况讨论:当点P在线段BD上时,利用函数解析式可求出点F的坐标,可证得AF=AP,可知点Q与点F重合,即可得到点Q的坐标;如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,易证△APH≌△PMQ,BH=2=AO,利用全等三角形的性质可证得QM=HP,AH=PM=4,利用函数解析式表示出点Q(a,),可表示出MQ,PH的长,根据PB的长,建立关于a的方程,解方程取出a的值,然后求出点Q的纵坐标,即可得到点Q的坐标;如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,设点Q(a,),易证△PHQ≌△APM,利用全等三角形的性质分别表示出BH,OM的长QH的长,根据QH的长建立关于a的方程,解方程求出a的值,即可得到点Q的坐标.
    【详解】
    解:(1)一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,
    令x=0,y=4;y=0,x=-2
    ∴点A、B的坐标分别为:(-2,0)、(0,4),
    ∴OA=2,OB=4
    由勾股定理得,AB= ,
    ∵四边形BOCD是正方形
    ∴BD=OB=CD=OC=4,
    ∴D的坐标为(-4,4)
    (2)解:∵△BDE≌△AFE,
    ∴AF=BD=4,
    ∴OF=2
    ∴F(2,0),
    设直线DF的解析式为
    把D(-4,4),F(2,0)代入得,
    解得,
    ∴直线DF的解析式为
    联立方程组
    解得,
    ∴点E的坐标为(-1,2)
    (3)如图,

    当点P在线段BD上时
    ∵点A(-2,0),点F(2,0)
    ∴AF=2-(-2)=4,
    当点Q与点F重合时,DA⊥BD于点P,
    ∴DA=AF=4,∠DAF=90°,
    ∴点Q(2,0);
    如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,

    易证△APH≌△PMQ,BH=2=AO
    ∴QM=HP,AH=PM=4,
    设点Q(a,)
    ∴;

    解之:a=14
    ∴当a=14时,y==-8,
    ∴点Q(14,-8);
    如图,当点Q在FD的延长线上时,∠QAP=90°,过点Q作QH⊥x轴于点H,过点P作PM⊥x轴于点M,

    易证△AQH≌△APM,
    ∴QH=AM,PM=AH=4,
    ∵OA=2,
    ∴OH=4+2=6,
    ∴点P的横坐标为-6
    当x=-6时y,
    ∴点Q;
    如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,

    设点Q(a,)
    易证△PHQ≌△APM,
    ∴PM=PH=4,AM=QH,
    ∴BH=-a,OM=-a-4,
    ∴AM=QH=2-(-a-4)=a+6,QH=

    解之:

    ∴点Q
    ∴点Q的坐标为:或或(14,-8)或(2,0).
    【点睛】
    本题属于一次函数综合题,考查了两一次函数图象相交或平行问题,三角形全等及其性质,正方形的性质,一次函数图象与坐标轴交点问题,等腰直角三角形等知识,解题的关键是熟练掌握基本知识.
    5、(1)y甲=-5x+10,y乙=4x-2;(2)相遇时甲离B地为km;(3)或.
    【解析】
    【分析】
    (1)找出直线l1、l2经过的两点坐标,两用待定系数法求出直线解析式即可;
    (2)联立方程组,求出方程组的解即可;
    (3)分相遇前和相遇后相距5千米列出方程求解即可.
    【详解】
    解:(1)设直线l1的解析式为
    ∵直线l1过点(2,0),(0,10)
    ∴代入解析式得,
    解得,
    ∴直线l1的解析式为
    设直线l2的解析式为
    ∵直线l2过点(0.5,0),(3,10)
    ∴代入解析式得,
    解得,
    ∴直线l2的解析式为.
    (2)由图象可知甲速度为10÷2=5km/h,乙速度为10÷(3-0.5)=4km/h,
    设甲出发后x小时相遇,则乙行驶(x-0.5)小时,根据题意得
    4(x-0.5)+5x=10,
    解得x=.
    当x=时,y甲=-5×+10=,
    ∴相遇时甲离B地为km.
    故答案为:,
    (3)由题意知:①或②
    解得,或
    所以,甲出发或小时后,甲、乙两人相距5千米.
    故答案为:或.
    【点睛】
    本题主要考查了一次函数的应用问题,在解题时要根据图形列出方程是解题的关键.

    相关试卷

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题,共27页。试卷主要包含了已知一次函数y=,下面哪个点不在函数的图像上.,,两地相距80km,甲等内容,欢迎下载使用。

    数学八年级下册第十四章 一次函数综合与测试同步练习题: 这是一份数学八年级下册第十四章 一次函数综合与测试同步练习题,共25页。试卷主要包含了函数的图象如下图所示等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后练习题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后练习题,共24页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map