数学八年级下册第十四章 一次函数综合与测试达标测试
展开京改版八年级数学下册第十四章一次函数月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一次函数的一般形式是(k,b是常数)( )
A.y=kx+b B.y=kx C.y=kx+b(k≠0) D.y=x
2、直线y=2x-1不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )
A. B. C. D.
4、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )
A.y<0 B.y>0 C.y<3 D.y>3
5、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:
①越野登山比赛的全程为1000米;
②甲比乙晚出发40分钟;
③甲在途中休息了10分钟;
④乙追上甲时,乙跑了750米.其中正确的说法有( )个
A.1 B.2 C.3 D.4
6、若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过A(0,﹣1),B(1,1),则不等式kx+b﹣1<0的解集为( )
A.x<0 B.x>0 C.x>1 D.x<1
7、在下列说法中,能确定位置的是( )
A.禅城区季华五路 B.中山公园与火车站之间
C.距离祖庙300米 D.金马影剧院大厅5排21号
8、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为( )
A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)
9、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是( )
A.y=2x+3 B.y=x﹣3 C.y=x+3 D.y=3﹣x
10、若直线y=kx+b经过A(0,2)和B(3,-1)两点,那么这个一次函数关系式是( )
A.y=2x+3 B.y=3x+2 C.y=-x+2 D.y=x-1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系中,直线交y轴于点A(0,2),交x轴于点B,直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上且在第一象限一动点.若是等腰三角形,点P的坐标是______________.
2、一次函数y=kx+b(k≠0)的图象是____,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向____平移,当b<0时,向____平移).
3、元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒()件,则应付款(元)与商品数(件)之间的关系式,化简后的结果是______.
4、已知一次函数的图象经过点和,则_______(填“>”“<”或“=”)
5、如图,函数y=mx+3与y=的图象交于点A(a,2),则方程组的解为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,直线与轴交于点,与轴交于点,点与点关于轴对称.
(1)求直线的函数表达式;
(2)设点是轴上的一个动点,过点作轴的平行线,交直线于点,交直线于点,连接.
①若,请直接写出点的坐标 ;
②若的面积为,求出点的坐标 ;
③若点为线段的中点,连接,如图2,若在线段上有一点,满足,求出点的坐标.
2、阅读下列一段文字,然后回答问题.
已知在平面内两点、,其两点间的距离,且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为或.
(1)已知A、B两点在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为,试求A、B两点之间的距离;
(2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.
(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标以及的最短长度.
3、一次函数的图像过,两点.
(1)求函数的关系式;
(2)画出该函数的图像;
(3)由图像观察:当x 时,y>0;当x 时,y<0;当时,y的取值范围是 .
4、已知y与x﹣1成正比例,且当x=3时,y=4
(1)求出y与x之间的函数解析式;
(2)当x=1时,求y的值.
5、红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.
| 普通间(元/人/天) | 豪华间(元/人/天) | 贵宾间(元/人/天) |
三人间 | 50 | 100 | 500 |
双人间 | 70 | 150 | 800 |
单人间 | 100 | 200 | 1500 |
(1)三人间、双人间普通客房各住了多少间?
(2)设三人间共住了x人,则双人间住了 人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;
(3)在直角坐标系内画出这个函数图象;
(4)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据一次函数的概念填写即可.
【详解】
解:把形如y=kx+b((k,b是常数,k≠0)的函数,叫做一次函数,
故选:C.
【点睛】
本题考查了一次函数的概念,做题的关键是注意k≠0.
2、B
【解析】
【分析】
根据一次函数的图象特点即可得.
【详解】
解:一次函数的一次项系数,常数项,
直线经过第一、三、四象限,不经过第二象限,
故选:B.
【点睛】
本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.
3、D
【解析】
【分析】
利用x=-1时,求函数值进行一一检验是否为1即可
【详解】
解: 当x=-1时,,图象不过点,选项A不合题意;
当x=-1时,,图象不过点,选项B不合题意;
当x=-1时,,图象不过点,选项C不合题意;
当x=-1时,,图象过点,选项D合题意;
故选择:D.
【点睛】
本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.
4、A
【解析】
【分析】
观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.
【详解】
∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),
∴y随x的增大而减小,
∴当x>2时,y<0.
故选:A.
【点睛】
本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为
.
5、C
【解析】
【分析】
根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.
【详解】
解:由图像可知,从起点到终点的距离为1000米,故①正确;
根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;
在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;
∵乙从起点到终点的时间为10分钟,
∴乙的速度为1000÷10=100米/分钟,
设乙需要t分钟追上甲,
,
解得t=7.5,
∴乙追上甲时,乙跑了7.5×100=750米,故④正确;
故选C.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
6、D
【解析】
【分析】
利用函数的增减性和x=1时的函数图像上点的位置来判断即可.
【详解】
解:如图所示:k>0,函数y= kx+b随x的增大而增大,直线过点B(1,1),
∵当x=1时,kx+b=1,即kx+b-1=0,
∴不等式kx+b﹣1<0的解集为:x<1.
故选择:D.
【点睛】
此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.
7、D
【解析】
【分析】
根据确定位置的方法逐一判处即可.
【详解】
解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;
B、中山公园与火车站之间,没能确定准确位置,故不符合题意;
C、距离祖庙300米,有距离但没有方向,故不符合题意;
D、金马影剧院大厅5排21号,确定了位置,故符合题意.
故选:D
【点睛】
本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.
8、B
【解析】
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
解:∵点P(m+3,2m+4)在x轴上,
∴2m+4=0,
解得:m=-2,
∴m+3=-2+3=1,
∴点P的坐标为(1,0).
故选:B.
【点睛】
本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.
9、D
【解析】
【分析】
先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式.
【详解】
解:由图可知:A(0,3),xB=1.
∵点B在直线y=2x上,
∴yB=2×1=2,
∴点B的坐标为(1,2),
设直线AB的解析式为y=kx+b,
则有:,
解得:,
∴直线AB的解析式为y=-x+3;
故选:D.
【点睛】
本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.
10、C
【解析】
【分析】
把两点的坐标代入函数解析式中,解二元一次方程组即可求得k与b的值,从而求得一次函数解析式.
【详解】
解:由题意得:
解得:
故所求的一次函数关系为
故选:C.
【点睛】
本题考查了用待定系数法求一次函数的解析式,其一般步骤是:设函数解析式、代入、求值、求得解析式.
二、填空题
1、,,,
【解析】
【分析】
利用分类讨论的思想方法分三种情形讨论解答:①,②,③,依据题意画出图形,利用勾股定理和轴对称的性质解答即可得出结论.
【详解】
交轴于点,
.
.
令,则,
.
.
直线垂直平分交于点,交轴于点,
,点的横坐标为1.
.
①时,如图,
过点作交轴于点,则,
,
.
.
,
.
.
同理,.
②当时,如图,
点在的垂直平分线上,
点的纵坐标为1,
.
③当时,则,如图,
,
.
综上,若是等腰三角形,点的坐标是或或或.
故答案为:或或或.
【点睛】
本题主要考查了一次函数图象的性质,一次函数图象上点的坐标的特征,等腰三角形的性质,勾股定理,线段垂直平分线的性质,利用分类讨论的思想方法解答是解题的关键.
2、 一条直线 上 下
【解析】
【分析】
根据一次函数的性质填写即可.
【详解】
解:∵函数为一次函数,
∴一次函数y=kx+b(k≠0)的图象是一条直线,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向上平移,当b<0时,向下平移).
故答案为:①一条直线 ②上 ③下.
【点睛】
本题考查了一次函数的性质,做题的关键是牢记性质准确填写.
3、y=48x+20(x>2)##y=20+48x(x>2)
【解析】
【分析】
根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.
【详解】
解:∵凡在该商店一次性购物超过 100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,
∴李明应付货款y(元)与礼盒件数x(件)的函数关系式是:
y=(60x-100)×0.8+100=48x+20(x>2),
故答案为:y=48x+20(x>2).
【点睛】
本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.
4、>
【解析】
【分析】
根据一次函数的性质,当k<0时,y随x的增大而减小,判断即可.
【详解】
∵一次函数的图象经过点和,且k<0,
∴k<0,
∵-2<3,
∴>,
故答案为:>.
【点睛】
本题考查了一次函数的基本性质,灵活运用性质是解题的关键.
5、
【解析】
【分析】
把(a,2)代入y=-2x中,求得a值,把交点的坐标转化为方程组的解即可.
【详解】
∵函数y=mx+3与y=的图象交于点A(a,2),
∴-2a=2,
解得a=-1,
∴A(-1,2),
∴方程组的解为,
故答案为:.
【点睛】
本题考查了一次函数的交点与二元一次方程组的关系,正确理解一次函数解析式的交点坐标与由解析式构成的二元一次方程组的解的关系是解题的关键.
三、解答题
1、(1);(2)①,;②点的坐标为,或,;③点F的坐标,.
【解析】
【分析】
(1)先确定出点B坐标和点A坐标,进而求出点C坐标,最后用待定系数法求出直线BC解析式;
(2)①设点M(m,0),则点P(m,),则,由B(0,3),C(6,0),则,,,再由勾股定理得,,则,由此求解即可;
②设点, ,点在直线上,,,,进行求解即可;
③过点作交于,过点作轴于,根据,是等腰直角三角形,再证,得出,,根据点为线段的中点,,求出,设,则, 待定系数法求直线的解析式为,点在上,,,代入得方程解方程即可.
【详解】
(1)对于,令,,
,
令,
,
,
,
点与点A关于轴对称,
,
设直线的解析式为,
,
,
直线的解析式为;
(2)①设点,
,
,,
,,,
,
是直角三角形,
,
,
,
,
故答案为:;
②设点,
点在直线上,
,
点在直线上,
,
,
的面积为,
,
,
,或,;
③过点作交于,过点作轴于,
,
是等腰直角三角形,
,,
,
,
,
,
,,
点为线段的中点,,
,,
设,则,,则,,
,,
设直线的解析式为,
,
解得:,
直线的解析式为,
点在上,,,
,
解得:,
点的坐标为,.
【点睛】
本题主要考查了坐标与图形,一次函数与几何综合,全等三角形的性质与判定,等腰直角三角形的性质,解题的关键在于能够熟练掌握待定系数法求一次函数解析式.
2、(1)5;(2)能,理由见解析;(3),
【解析】
【分析】
(1)根据文字提供的计算公式计算即可;
(2)根据文字中提供的两点间的距离公式分别求出DE、DF、EF的长度,再根据三边的长度即可作出判断;
(3)画好图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最短,然后有待定系数法求出直线DG的解析式即可求得点P的坐标,由两点间距离也可求得最小值.
【详解】
(1)∵A、B两点在平行于y轴的直线上
∴AB=
即A、B两点间的距离为5
(2)能判定△DEF的形状
由两点间距离公式得:,
,
∵DE=DF
∴△DEF是等腰三角形
(3)如图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最小
由对称性知:点G的坐标为,且PG=PF
∴PD+PF=PD+PG≥DG
即PD+PF的最小值为线段DG的长
设直线DG的解析式为,把D、G的坐标分别代入得:
解得:
即直线DG的解析式为
上式中令y=0,即,解得
即点P的坐标为
由两点间距离得:DG=
所以PD+PF的最小值为
【点睛】
本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.
3、(1);(2)见解析;(3);;
【解析】
【分析】
(1)运用待定系数法求出函数关系式即可;
(2)根据“两点确定一条直线”画出直线即可;
(3)根据函数图象解答即可.
【详解】
解:(1)设经过A,B两点的直线解析式为y=kx+b,
把,两点坐标代入,得
解得,
∴直线的解析式为;
(2)当x=0时,y=4,当y=0时,x=2,
∴直线经过(0,4),(2,0),
画图象如图所示,
(3)根据图象可得:
当时,;当时,;当时,
故答案为:;;
【点睛】
本题主要考查了运用待定系数法求一次函数解析式,画一次函数图象以及一次函数图象与性质,熟练掌握一次函数的图象与性质是解答本题的关键.
4、(1)y=2x﹣2;(2)0
【解析】
【分析】
(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;
(2)利用(1)中关系式求出自变量为1时对应的函数值即可.
【详解】
解:(1)设y=k(x﹣1),
把x=3,y=4代入得(3﹣1)k=4,解得k=2,
所以y=2(x﹣1),
即y=2x﹣2;
(2)当x=1时,y=2×1﹣2=0.
【点睛】
本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
5、(1)三人间8间,双人间13间;(2)(50﹣x),y=﹣10x+1750(0≤x<50,且x为整数);(3)见解析;(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元
【解析】
【分析】
①分别设三人间和双人间为m、n,根据人数和钱数列方程组求解;
②根据收费列出表达式整理即可;
③因为x为人数,并且房间刚好住满所以应该是3的倍数,又剩下的人住双人间所以是2的倍数,因此x应该为6的倍数.
【详解】
解:(1)设租住三人间m间,双人间n间,根据题意
,
解得,
∴三人间8间,双人间13间;
(2)双人间住了(50﹣x)人,
根据题意y=[50x+70(50﹣x)]×50%
即y=﹣10x+1750(0≤x<50,且x为整数);
(3)因为两种房间正好住满所以x的值为3的倍数而(50﹣x)还是2的倍数
因此,所作图象上一些点:(0,1750),(6,1690),(12,1630),(18,1570),(24,1510),(30,1450),(36,1390),(42,1330),(48,1270)
(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元.
【点睛】
本题主要考查二元一次方程组的实际应用,一次函数的实际应用,解题的关键在于能正确理解题意.
北京课改版八年级下册第十四章 一次函数综合与测试复习练习题: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试复习练习题,共24页。试卷主要包含了已知点A,已知点等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题,共20页。试卷主要包含了若一次函数y=kx+b,已知点A,点P的坐标为等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步训练题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步训练题,共21页。试卷主要包含了已知点,已知点A等内容,欢迎下载使用。