2021学年第十六章 一元二次方程综合与测试达标测试
展开京改版八年级数学下册第十六章一元二次方程同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值为( )
A.1 B.-1 C.1或-1 D.0
2、若关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是( )
A.a≥﹣且a≠0 B.a≤﹣ C.a≥﹣ D.a≤﹣且a≠0
3、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为,则可列方程得( )
A. B.
C. D.
4、下列事件为必然事件的是( )
A.抛掷一枚硬币,正面向上
B.在一个装有5只红球的袋子中摸出一个白球
C.方程x2﹣2x=0有两个不相等的实数根
D.如果|a|=|b|,那么a=b
5、下列一元二次方程中有两个相等实数根的是( )
A.x2﹣8=0 B.x2﹣4x+4=0 C.2x2+3=0 D.x2﹣2x﹣1=0
6、若a是方程的一个根,则的值为( )
A.2020 B. C.2022 D.
7、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为,则根据题意可列的方程为( )
A. B.
C. D.
8、小亮、小明、小刚三名同学中,小亮的年龄比小明的年龄小2岁,小刚的年龄比小明的年龄大1岁,并且小亮与小刚的年龄的乘积是130.你知道这三名同学的年龄各是多少岁吗?设小明的年龄为x岁,则可列方程为( )
A. B.
C. D.
9、若一元二次方程有一个根为1,则下列等式成立的是( )
A. B. C. D.
10、南宋著名数学家杨辉所著的《杨辉算法》中记载:“直田积八百六十四步,只云长阔共六十步,问长阔各几何?”意思是“一块矩形田地的面积是864平方步,只知道它的长与宽的和是60步,问它的长和宽各是多少步?”设矩形田地的长为步,根据题意可以列方程为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、设a,b是方程x2+x﹣2021=0的两个实数根,则a2+2a+b的值为____.
2、已知关于x方程的一个根是1,则m的值等于______.
3、若关于x,y的方程组有唯一解,则k的值是 _____.
4、若关于x的方程ax2+bx+c=0(a≠0)满足a﹣b+c=0,称此方程为“月亮”方程,已知方程a2x2﹣1999ax+1=0(a≠0)是“月亮”方程,求a2+1999a+的值为 _____.
5、2021年10月10日,第七届黑龙江绿色食品产业博览会开幕,虎林市组建团队参加,为增进了解,在参加会议前团队每两个人间互送了一次名片,一共送出90张名片,则这个团队有_______人.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:
2、先化简,再求值.
,请从一元二次方程的两个根中选择一个你喜欢的求值.
3、在商场中,被称为“国货之星”某运动品牌的鞋子,每天可销售20双,每双可获利40元.为庆祝新年,对该鞋子进行促销活动,该鞋子每双每降价1元,平均每天可多售出2双.若设该鞋子每双降价x元,请解答下列问题:
(1)用含x的代数式表示:降价x元后,每售出一双该鞋子获得利润是 元,平均每天售出 双该鞋子;
(2)在此次促销活动中,每双鞋子降价多少元,可使该品牌的鞋子每天的盈利为1250元?
4、某种服装,平均每天可以销售20件,每件赢利44元.在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件.
(1)如果每件降价x元,则每天可以销售 件服装;(用含x的代数式表示)
(2)如果商家每天要获得利润1600元.则每件服装应降价多少元;
5、(1)解一元二次方程:x2﹣6x+9=(5﹣2x)2;
(2)求证:无论m取何值时,方程(x﹣3)(x﹣2)﹣m2=0总有两个不相等的实数根.
-参考答案-
一、单选题
1、B
【分析】
根据一元二次方程的定义和一元二次方程的解的定义得出a-1≠0,a2-1=0,求出a的值即可.
【详解】
解:根据题意将x=0代入方程可得:a2-1=0,
解得:a=1或a=-1,
∵a-1≠0,即a≠1,
∴a=-1,
故选:B.
【点睛】
本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a-1≠0且a2-1=0,题目比较好,但是一道比较容易出错的题.
2、A
【分析】
根据一元二次方程的定义和一元二次方程根的判别式求解即可.
【详解】
解:∵关于x的一元二次方程ax2+x﹣1=0有实数根,
∴,
解得:且.
故选A.
【点睛】
本题主要考查一元二次方程根的判别式和一元二次方程的定义,熟练掌握根的判别式和一元二次方程的定义是解题的关键.
3、C
【分析】
根据增长率的意义,列式即可.
【详解】
设这个增长率为,
根据题意,得,
故选C.
【点睛】
本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.
4、C
【分析】
根据必然事件的定义:在一定条件下,一定会发生的事件,叫做必然事件,进行逐一判断即可
【详解】
解:A、抛掷一枚硬币,可能正面向上,也有可能反面向上,不是必然事件,不符合题意;
B、在一个装有5只红球的袋子中摸出一个白球是不可能发生的,不是必然事件,不符合题意;
C、∵,∴方程x2﹣2x=0有两个不相等的实数根,是必然事件,符合题意;
D、如果|a|=|b|,那么a=b或a=-b,不是必然事件,不符合题意;
故选C.
【点睛】
本题主要考查了必然事件的定义,熟知定义是解题的关键.
5、B
【分析】
由根的判别式为Δ=b2﹣4ac,挨个计算四个选项中的Δ值,由此即可得出结论.
【详解】
解:A、∵Δ=b2﹣4ac=02﹣4×1×(﹣8)=32>0,
∴该方程有两个不相等的实数根;
B、∵Δ=b2﹣4ac=(﹣4)2﹣4×1×(﹣4)=0,
∴该方程有两个相等的实数根;
C、∵Δ=b2﹣4ac=02﹣4×2×3=﹣24<0,
∴该方程没有实数根;
D、∵Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,
∴该方程有两个不相等的实数根.
故选:B.
【点睛】
本题考查了一元二次方程根的判别式,解题的关键是根据根的判别式的正负判定实数根的个数.
6、C
【分析】
先根据一元二次方程根的定义得到,再把变形为,然后利用整体代入的方法计算.
【详解】
解:是关于的方程的一个根,
,
,
,
.
故选:C.
【点睛】
本题考查了一元二次方程的解,解题的关键是能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,利用整体代入的方法计算可简化计算.
7、C
【分析】
根据等量关系第10月的营业额×(1+x)2=第12月的营业额列方程即可.
【详解】
解:根据题意,得:,
故选:C.
【点睛】
本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.
8、B
【分析】
设小明的年龄为x岁,则可用x表示出小亮的年龄和小刚的年龄.再根据小亮与小刚的年龄的乘积是130,即可列出方程.
【详解】
设小明的年龄为x岁,则小亮的年龄为岁,小刚的年龄为岁,
根据题意即可列方程:.
故选:B.
【点睛】
本题考查一元二次方程的实际应用.理解题意,正确找出题干中的数量关系列出等式是解答本题的关键.
9、D
【分析】
将代入方程即可得出答案.
【详解】
解:由题意,将代入方程得:,
故选:D.
【点睛】
本题考查了一元二次方程的根,熟记一元二次方程的根的定义(使方程左、右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根)是解题关键.
10、C
【分析】
设长为x步,则宽为(60-x)步,根据矩形田地的面积为864平方步,即可得出关于x的一元二次方程,此题得解.
【详解】
设长为x步,则宽为(60-x)步,
依题意得:x(60-x)=864,
整理得:.
故选:C.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
二、填空题
1、
【分析】
由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.
【详解】
解:∵a,b是方程x2+x−2021=0的两个实数根,
∴a2+a−2021=0,即a2+a=2021,a+b==−1,
∴a2+2a+b=a2+a+a+b=2021−1=,
故答案为:.
【点睛】
本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.
2、2
【分析】
把方程的根代入原方程,求解即可.
【详解】
解:因为关于x方程的一个根是1,
所以,,解得,,
故答案为:2.
【点睛】
本题考查了一元二次方程的根,解题关键是明确方程根的意义,代入原方程求解.
3、-1或3或-1
【分析】
把①代入②,得到关于x的一元二次方程,根据判别式为0时方程有两个相等的实根,列出方程求出k即可.
【详解】
解:
把①代入②得,kx-1=x2+x,
整理得,x2+(1-k)x+1=0
使方程有唯一解,判别式为0,
(1-k)2-4=0,
解得k1=-1,k2=3.
故答案为:-1或3
【点睛】
本题考查的是二元二次方程的解的判断,步骤是把方程组通过代入法化为一元二次方程,然后根据一元二次方程根的判别式进行判断.
4、-2
【分析】
根据“月亮”方程的定义得出,变形为代入计算即可.
【详解】
解:∵方程是“月亮”方程,
∴,
∴,
∴
故答案为-2.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边都相等的未知数的值是一元二次方程的解.利用整体代入的方法计算是解决本题的关键.
5、10
【分析】
设这个团队有x人,根据“每两个人间互送了一次名片,一共送出90张名片,”列出方程求解即可.
【详解】
解:设这个团队有x人,则
x(x-1)=90,
解得:(舍),
∴个团队有10,
故答案为:10.
【点睛】
本题考查了由实际问题抽象出一元二次方程,解题的关键是根据题意列出方程.
三、解答题
1、,
【分析】
因式分解,可化为的形式,令,得出方程的解.
【详解】
解:
或
,.
【点睛】
本题考察了一元二次方程求解.解题的关键与难点是将方程进行因式分解.
2、;
【分析】
先根据分式的混合运算顺序和运算法则化简原式,再利用因式分解法解一元二次方程求出a的值,继而选择任意一个a的值代入计算即可.
【详解】
解: ÷(+3 +)
= ÷
= •
= •
=
2-7+12=0
∙=0
∴或 = 0
∴,=
又∵,,
∴当时,原式
【点睛】
本题主要考查分式的化简求值和解一元二次方程,解题的关键是掌握分式的混合运算顺序和运算法则及因式分解法解一元二次方程.
3、(1)(40-x),;(2)15元
【分析】
(1)根据利用40 减去降价,可得每售出一双该鞋子获得利润,再用20加上多售出的数量,即可求解;
(2)根据该品牌的鞋子每天的盈利为1250元,列出方程,即可求解.
【详解】
解:(1)根据题意得:每售出一双该鞋子获得利润是(40-x);平均每天售出双该鞋子;
(2)由题意可列方程(40-x)(20+2x)=1250
x2-30x+225=0,
(x-15)2=0,
解得x1=x2=15 ,
答:每双鞋子降价15元,可使该品牌的鞋子每天的盈利为1250元.
【点睛】
本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.
4、(1)(20+5x);(2)4元
【分析】
(1)根据“每件降价1元,则每天可多售5件”可以列出代数式;
(2)根据关系式:每件服装的盈利×(原来的销售量+增加的销售量)=1600,计算得到结果即可.
【详解】
(1)由题意得:每天可以销售服装的件数为:(20+5x);
(2)由题意得:
(44﹣x)(20+5x)=1600·
解得,x1=4,x2=36
∵36>10,
∴x2=36(不合题意,舍去),
答:每件服装应降价4元.
【点睛】
本题考查了一元二次方程的应用,得到现在的销售量是解决本题的难点;根据每天盈利得到相应的等量关系是解决本题的关键.
5、(1);(2)见详解.
【分析】
(1)首先利用完全平方公式以及平方差公式分解因式,进而解方程得出即可;
(2)首先表示出Δ,得出Δ符号进而求出即可.
【详解】
(1)解:,
,
则,
整理得:,
解得:;
(2)证明:把化为一般形式:,
,
故无论m为何值,4m2+1永远大于0,则方程总有两个不相等的实数根.
【点睛】
此题主要考查了因式分解法解一元二次方程以及根的判别式,正确分解因式是解题关键.
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试一课一练: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试一课一练,共16页。试卷主要包含了一元二次方程x2﹣x=0的解是等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试一课一练: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试一课一练,共17页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试精练: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试精练,共17页。试卷主要包含了用配方法解方程,则方程可变形为等内容,欢迎下载使用。