开学活动
搜索
    上传资料 赚现金

    2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系课时练习练习题(精选含解析)

    2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系课时练习练习题(精选含解析)第1页
    2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系课时练习练习题(精选含解析)第2页
    2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系课时练习练习题(精选含解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十五章 平面直角坐标系综合与测试一课一练

    展开

    这是一份数学七年级下册第十五章 平面直角坐标系综合与测试一课一练,共30页。试卷主要包含了在平面直角坐标系中,点,点A的坐标为,则点A在等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列各点,在第一象限的是(    A. B. C.(2,1) D.2、点P(﹣1,2)关于y轴对称点的坐标是(  ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)3、点P在第二象限内,P点到xy轴的距离分别是4、3,则点P的坐标为(  )A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)4、根据下列表述,能够确定具体位置的是(  )A.北偏东25°方向 B.距学校800米处C.温州大剧院音乐厅8排 D.东经20°北纬30°5、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是(  )A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)6、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是        A.( - 1, - 3) B.( - 1,3) C.(1, - 3) D.(3,1)7、已知点关于x轴的对称点与点关于y轴的对称点重合,则    A.5 B.1 C. D.8、点A的坐标为,则点A在(    A.第一象限 B.第二象限 C.第三象限 D.第四象限9、在平面直角坐标系中,点关于原点对称的点的坐标是(    A. B. C. D.10、点P(-3,1)关于原点对称的点的坐标是(    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 ___.2、如图,在平面直角坐标系中,点P1的坐标为(),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4OP5,…,OPnn为正整数),则点P2020的坐标是________.3、在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点的坐标是,则经过第2021次变换后所得的点的坐标是___________.4、线段AB=5,AB平行于x轴,AB左边,若A点坐标为(-1,3),则B点坐标为_____.5、平面直角坐标系中,点P(3,-4)到x轴的距离是________.三、解答题(10小题,每小题5分,共计50分)1、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△ABC′,点ABC的对应点分别为A′、B′、C′.(1)根据要求在网格中画出相应图形;(2)写出△ABC′三个顶点的坐标.2、如图所示的方格纸中,每个小方格的边长都是,点(1)作关于轴对称的(2)通过作图在轴上找出点,使最小,并直接写出点的坐标.3、如图,在平面直角坐标系中,点为坐标原点,点,点轴的负半轴上,点,连接,且(1)求的度数;(2)点点出发沿射线以每秒2个单位长度的速度运动,同时,点点出发沿射线以每秒1个单位长度的速度运动,连接,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);(3)在(2)的条件下,当点轴的正半轴上,点轴的负半轴上时,连接,且四边形的面积为25,求的长.4、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(aβ)表示点P在平面内的位置,并记为P(aβ).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.(2)如果点AB在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.5、在平面直角坐标系中,△ABC各顶点的坐标分别是A(2,5),B(1,2),C(4,1).(1)作△ABC关于y轴对称后的△ABC′,并写出A′,B′,C′的坐标;(2)在y轴上有一点P,当△PBB'和△ABC的面积相等时,求点P的坐标.6、如图,方格图中每个小正方形的边长为1,点ABC都是格点.(1)画出△ABC关于直线MN对称的(2)若B为坐标原点,请写出的坐标,并直接写出的长度..(3)如图2,AC是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)7、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点AC的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△ABC′.(3)求△ABC的面积        8、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2).(1)画出△ABC关于原点O对称的△A1B1C1(2)求△A1B1C1的面积.9、如图,在平面直角坐标系中,已知点A(2,﹣2),点Px轴上的一个动点.(1)A1A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1A2的坐标,并在图中描出点A1A2(2)求使△APO为等腰三角形的点P的坐标.10、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C(2)△ABC的面积是        (3)在y轴上有一点D,且SACDSABC,则点D的坐标为         -参考答案-一、单选题1、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】解:在第四象限,故本选项不合题意;在第二象限,故本选项不合题意;在第一象限,故本选项符合题意;在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、A【分析】平面直角坐标系中任意一点Pxy),关于y轴的对称点的坐标是(-xy),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.3、C【分析】Pxy轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.【详解】P点到xy轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到xy轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.4、D【分析】根据确定位置的方法即可判断答案.【详解】A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;D. 东经20°北纬30°可以确定一点的位置,故此选项正确.故选:D.【点睛】本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.5、A【分析】根据平面直角坐标系中任意一点Pxy),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.【详解】解:∵点(2,﹣5)关于x轴对称,∴对称的点的坐标是(2,5).故选:A【点睛】本题主要考查了关于x轴对称点的性质,点Pxy)关于x轴的对称点P′的坐标是(x,-y).6、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可.【详解】解:∵两个点关于原点对称时,它们的坐标符号相反,∴点关于原点对称的点的坐标是故选:A.【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律.7、D【分析】关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算ab计算即可.【详解】∵点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,a=-3,b=-2,-5,故选D.【点睛】本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键.8、A【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:由题意,∵点A的坐标为∴点A在第一象限;故选:A【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.10、C【分析】据平面直角坐标系中任意一点Pxy),关于原点的对称点是(xy),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P3,1)关于原点O中心对称的点的坐标为(3,1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.二、填空题1、(1,﹣1)【分析】先利用勾股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标.【详解】∵点A的坐标为(1,0),OA=1,∵四边形OABC是正方形,∴∠OAB=90°,ABOA=1,B(1,1),连接OB,如图:由勾股定理得:OB由旋转的性质得:OBOB1OB2OB3=…=∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,发现是8次一循环,则2022÷8=252…6,∴点B2022的坐标为(1,﹣1),故答案为:(1,﹣1).【点睛】本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键.2、(0,【分析】根据题意得出OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=8=23OP5=16=24…,OPn=2n-1,再利用旋转角度得出点P2020的坐标与点P4的坐标在同一直线上,进而得出答案.【详解】解:∵点P1的坐标为(),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=23OP5=24…,OPn=2n-1由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,).故答案为:(0,).【点睛】此题主要考查了点的变化规律,根据题意得出点P2020的坐标与点P4的坐标在同一直线上是解题关键.3、【分析】由题意根据点A第四次关于y轴对称后在第一象限,即点A回到初始位置,所以,每四次对称为一个循环组依次循环进行分析即可得出答案.【详解】解:根据题意可知:点A第四次关于y轴对称后在第一象限,即点A回到初始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505…1,∴经过第2021次变换后所得的A点与第一次关于x轴对称变换的位置相同,在第四象限,坐标为.故答案为:【点睛】本题考查轴对称的性质以及点的坐标变换规律,读懂题目信息,观察出每四次对称为一个循环组依次循环是解题的关键.4、(4,3)【分析】由题意根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,进而依据AB左边即可求出点B的坐标.【详解】解:∵ABx轴,A点坐标为(-1,3),∴点B的纵坐标为3,AB左边时,∵AB=5,∴点B的横坐标为-1+5=4,此时点B(4,3).故答案为:(4,3).【点睛】本题考查坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相等.5、4【分析】根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.【详解】解:点P(3,-4)到x轴的距离为|﹣4|=4.故答案为:4.【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.三、解答题1、(1)见解析;(2)【分析】(1)利用平移变换的性质分别作出的对应点即可.(2)根据平面直角坐标系写出的坐标.【详解】解:(1)如图,△即为所求,(2)根据平面直角坐标系可得:【点睛】本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.2、(1)见解析;(2)见解析,点P的坐标为(−3,0)       【分析】(1)先分别作出点ABC关于y轴的对称点,然后再顺次连接可得;(2)作点A关于x轴的对称点A″,再连接A″Cx轴于点P,再确定点P的坐标即可.【详解】解:(1)如图所示:即为所求. (2)作点A关于x轴的对称点A′′,连结A′′C,交x轴于点P,点P即为所求,点P的坐标为(−3,0)    【点睛】本题主要考查作图﹣轴对称变换,熟练掌握轴对称变换的定义和性质及最短路径问题是解答本题的关键.3、(1);(2);(3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点,连接,根据四边形的面积求得,进而求得,由,设,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得【详解】(1)是等腰直角三角形,(2)①当点在轴正半轴时,如图,②当点在原点时,都在轴上,不能构成三角形,则时,不存在③当点在轴负半轴时,如图, 综上所述:(3)如图,过点,连接,则 是等腰直角三角形是等腰直角三角形中,【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.4、(1)6,30°;(2)见解析,30【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.【详解】(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.答案:6,30°(2)如图所示:A(5,30),B(12,120),∴∠BOX=120°,∠AOX=30°,∴∠AOB=90°,OA=5,OB=12,∴△AOB的面积为OA·OB=30.【点睛】本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.5、(1)见解析;A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);(2)P的坐标为(0,7)或(0,﹣3)【分析】(1)分别作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;(2)根据三角形的面积公式,进而可得出P点坐标.【详解】解:(1)如图所示:A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);(2)△ABC的面积=BB'=2,P的坐标为(0,7)或(0,﹣3).【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.6、(1)画图见解析;(2);(3)画图见解析【分析】(1)分别确定关于对称的对称点 再顺次连接从而可得答案;(2)根据在坐标系内的位置直接写其坐标与的长度即可;(3)先确定关于的对称点,再连接 从而可得答案.【详解】解:(1)如图1,是所求作的三角形,(2)如图1,为坐标原点,  (3)如图2,点即为所求作的点.【点睛】本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.7、(1)见解析;(2)见解析;(3)4.【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△ABC′;(3)利用面积加减法计算.(1)如图所示:(2)解:如图所示:(3)解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,故答案为:4.【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.8、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求△A1B1C1面积.【详解】(1)∵∴△ABC关于原点O对称的△A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点.9、(1)A1(﹣2,2),A1(﹣2,﹣2),见解析;(2)P点坐标为(﹣2,0)或(2,0)或(4,0)或(2,0)【分析】(1)利用关于原点对称和y轴对称的点的坐标特征写出点A1A2的坐标,然后描点;(2)先计算出OA的长,再分类讨论:当OPOAAPAOPOPA时,利用直角坐标系分别写出对应的P点坐标.【详解】解:(1)A1(﹣2,2),A1(﹣2,﹣2),如图,(2)如图,设P点坐标为(t,0),OPOA时,P点坐标为APAO时,P点坐标为(4,0),POPA时,P点坐标为(2,0),综上所述,P点坐标为或(4,0)或(2,0).【点睛】本题考查的是轴对称的性质,中心对称的性质,坐标与图形,等腰三角形的定义,清晰的分类讨论是解本题的关键.10、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).【分析】(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.(2)得出△ABC的底和高再由三角形面积公式计算即可.(3)SACDSABC为同底不同高,故由(2)问知,再由点Dy轴上知D点坐标为(0,4)或(0,-4).【详解】解:(1)如图所示,点A为(-4,0),∵点C与点A关于y轴对称∴点C坐标为(4,0)(2)由×底×高有(3)∵SACDSABCAC=ACD点的纵坐标为4或-4又∵D点在y轴上D点坐标为(0,4)或(0,-4).【点睛】本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共32页。试卷主要包含了点关于轴对称的点的坐标是,在平面直角坐标系中,点P,已知A等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练,共33页。试卷主要包含了若平面直角坐标系中的两点A,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共33页。试卷主要包含了如果点P,点M等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map