开学活动
搜索
    上传资料 赚现金

    2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系专项测试试题(含详细解析)

    2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系专项测试试题(含详细解析)第1页
    2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系专项测试试题(含详细解析)第2页
    2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系专项测试试题(含详细解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题,共27页。试卷主要包含了如果点P,点关于轴对称的点的坐标是,直角坐标系中,点A与点B关于等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(ab)平移后的对应点的坐标为(    A.(ab) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)2、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为(    A. B. C. D.3、在平面直角坐标系中,点,关于轴对称点的坐标是(    A. B. C. D.4、在平面直角坐标系中,点关于原点对称的点的坐标是(    A. B. C. D.5、如果点Pmn)是第三象限内的点,则点Q(-n,0)在(    A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上6、点关于轴对称的点的坐标是(    A. B. C. D.7、直角坐标系中,点A(-3,4)与点B(3,-4)关于(     A.原点中心对称 B.轴轴对称 C.轴轴对称 D.以上都不对8、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点DAB的中点,将点D绕着点A旋转90°得到点D的坐标为(    A.(﹣2,1)或(2,﹣1) B.(﹣2,5)或(2,3)C.(2,5)或(﹣2,3) D.(2,5)或(﹣2,5)9、在△ABC中,ABAC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是(    A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)10、点P在第二象限内,Px轴的距离是4,到y轴的距离是3,那么点P的坐标为(   A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、点关于x轴对称的点的坐标为________.2、点A关于轴的对称点坐标是,则点关于轴的对称点坐标是_____.3、在平面直角坐标系中,若点P关于x轴的对称点Q的坐标是(﹣3,2),则点P关于y轴的对称点R的坐标是_____.4、在平面直角坐标系中,将点P(3,﹣1)向上平移5个单位长度到点M,则点M关于原点对称的点的坐标是 _____.5、在平面直角坐标系中,点A(﹣3,1)绕原点逆时针旋转180°得到的点A'的坐标是 _____.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)作出△ABC关于y轴的对称图形△A'B'C';(2)写出点A',B',C'的坐标;(3)在y轴上找一点P,使PA+PC的长最短.2、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;(3)A1B1C1A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由.3、(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O(2)如图②所示,已知△ABC的三个顶点的坐标分别为A(4,﹣1),B(1,1),C(3,﹣2).将△ABC绕原点O旋转180°得到△A1B1C1,请画出△A1B1C1,并写出点A1的坐标.4、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC(2)作△ABC关于x轴对称的△DEF,其中点ABC的对应点分别为点DEF(3)连接CECF,请直接写出△CEF的面积.5、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点OABC的顶点都在格点上.(1)在图中作出DEF,使得DEEABC关于x轴对称;(2)写出DE两点的坐标:D      E      (3)求DEF的面积.6、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣2,3),B(﹣3,1),C(﹣1,2).(1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1(2)画出△ABC关于原点O的对称图形△A2B2C2(3)直接写出下列点的坐标:A1   B2     7、如图,在平面直角坐标系中,△ABC的两个顶点ABx轴上,顶点Cy轴上,且∠ACB=90°.(1)图中与∠ABC相等的角是    (2)若AC=3,BC=4,AB=5,求点C的坐标.8、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为(1)画出将关于点对称的图形(2)写出点的坐标.9、如图,已知的三个顶点分别为(1)请在坐标系中画出关于轴对称的图形的对应点分别是),并直接写出点的坐标;(2)求四边形的面积.10、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点AC的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△ABC′.(3)求△ABC的面积         -参考答案-一、单选题1、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(ab)平移后的对应点的坐标.【详解】解:∵△ABO′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,∴△ABO内任意点P(ab)平移后的对应点P′的坐标为(a+4,b+2).故选:D.【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.2、C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.3、A【分析】平面直角坐标系中任意一点Pxy),关于x轴的对称点的坐标是(x,-y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【详解】解:点A(3,-4)关于x轴的对称点的坐标是(3,4),故选:A【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.4、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.5、A【分析】根据平面直角坐标系中象限的坐标特征可直接进行求解.【详解】解:∵点Pmn)是第三象限内的点,n<0,∴-n>0,∴点Q(-n,0)在x轴正半轴上;故选A.【点睛】本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键.6、B【分析】根据两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,即可得答案.【详解】解:∵点A的坐标为(-2,-3),∴点A(-2,-3)关于x轴对称的点的坐标是(-2,3).故选:B.【点睛】本题是对坐标系中对称点的考查,熟记两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,是解题关键.7、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案.【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称.故选A.【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系.掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键.8、C【分析】分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解.【详解】解:设点D绕着点A逆时针旋转90°得到点D1分别过点DD1轴的垂线,分别交轴于点CE,如图:根据旋转的性质得∠DAD1=90°,AD1=AD∴∠AED1=∠ACD=90°,∴∠D1+∠EAD1=90°,∠EAD1 +∠DAC=90°,∴∠D1=∠DAC∴△AD1E≌△DACCD=AEED1=ACA(0,4),B(2,0),点DAB的中点,∴点D的坐标为(1,2),CD=AE=1,ED1=AC=AO-OC=2,∴点D1的坐标为(2,5);设点D绕着点A顺时针旋转90°得到点D2同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),故选:C.【点睛】本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1D2的位置是解题的关键.9、A【分析】由题意可知BOCO,又ABAC,得点Ay轴上,即可求解.【详解】解:由题意可知BOCO∵又ABACAOBC∴点Ay轴上,∴选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A.【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.10、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】解:∵点P在第二象限内,点Px轴的距离是4,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是4,∴点P的坐标为(-3,4).故选C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.二、填空题1、 (-2,-5)【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点关于轴对称点的坐标为:故答案为:【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.2、(2,1)【分析】根据关于坐标轴对称的点的特征,先求得的坐标,进而求得的坐标【详解】解:∵点A关于轴的对称点坐标是∴点坐标是关于轴的对称点坐标是故答案为:【点睛】本题考查了关于坐标轴对称的点的坐标特征,掌握关于坐标轴对称的点的坐标特征是解题的关键.①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数3、【分析】根据题意直接利用关于x轴、y轴对称点的性质进行分析即可得出答案.【详解】解:∵点P关于x轴的对称点Q的坐标是(﹣3,2),∴点P的坐标为(﹣3,﹣2),∴点P关于y轴的对称点R的坐标是(3,﹣2),故答案为:(3,﹣2).【点睛】本题主要考查关于x轴、y轴对称点的性质,正确掌握横、纵坐标的关系是解题的关键.4、【分析】根据点的平移规律,可得平移后的点,根据关于原点对称的点的横、纵坐标都互为相反数,可得答案.【详解】将点向上平移5个单位长度得到点M关于原点对称的点的坐标是故答案为:【点睛】本题考查了平移与坐标变换,利用关于原点对称的点的横、纵坐标都互为相反数是解题关键.5、(3,﹣1)【分析】由条件可知A点和A′点关于原点对称,可求得答案.【详解】解:∵将OA绕原点O逆时针旋转180°得到OA′,A点和A′点关于原点对称,A(﹣3,1),A′(3,﹣1),故答案为:(3,﹣1).【点睛】本题主要考查旋转的定义,由条件求得AA′关于原点对称是解题的关键.三、解答题1、(1)见解析;(2)A′(1,5),B′(1,0),C′(4,3);(3)见解析【分析】(1)分别作出点ABC关于y轴的对称点,再收尾顺次连接即可得;(2)根据△A'B'C'各顶点的位置,写出其坐标即可;(3)连接PC,则PC=PC′,根据两点之间线段最短,可得PA+PC的值最小.【详解】解:(1)如图所示,△ABC′为所求作;(2)由图可得,A′(1,5),B′(1,0),C′(4,3);(3)如图所示,连接AC′,交y轴于点P,则点P即为所求作.【点睛】本题主要考查了利用轴对称变换作图以及最短距离的问题,解题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,运用轴对称变换来解决,多数情况要作点关于某直线的对称点.关于y轴对称的点,纵坐标相同,横坐标互为相反数.2、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.【分析】(1)分别作出ABC的对应点A1B1C1即可;(2)分别作出ABC的对应点A2B2C2即可;(3)根据轴对称的定义判断即可.【详解】解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,△A2B2C2即为所求,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1).【分析】(1)根据对称中心的性质可得对应点连线的交点即为对称中心;(2)根据题意作出ABC绕原点O旋转180°得到的点A1B1C1,然后顺次连接A1B1C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标.【详解】(1)如图所示,点O即为要求作的对称中心.(2)如图所示,△A1B1C1即为要求作的三角形,由点A1的在平面直角坐标系中的位置可得,A1的坐标为(-4,1).【点睛】此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质.4、(1)作图见详解;(2)作图见详解;(3)的面积为2.【分析】(1)直接在坐标系中描点,然后依次连线即可;(2)先确定ABC三点关于x轴对称的点的坐标,然后依次连接即可;(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.【详解】解:(1)如图所示,即为所求;(2)ABC三点关于x轴对称的点的坐标分别为:然后描点、连线,即为所求;(3)由图可得:的面积为2.【点睛】题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.5、(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5【分析】(1)先找出点ABC关于x轴的对称点,然后依次连接即可得; (2)根据△DEF的位置,即可得出DE两点的坐标;(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.【详解】解:(1)如图所示,△DEF即为所求;(2)由图可得,D(﹣1,﹣4),E(﹣4,1);故答案为:(﹣1,﹣4),(﹣4,1);(3)面积为9.5.【点睛】题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.6、(1)见解析;(2)见解析;(3)(-3,-2),(3,-1)【分析】(1)先根据网格找到ABC的对应点A1B1C1,然后顺次连接A1B1C1即可;(2)先根据网格找到ABC的对应点A2B2C2,然后顺次连接A2B2C2即可;(3)根据(1)(2)说画图形求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,即为所求;(3)由图可知,的坐标为(-3,-2),的坐标为(3,-1),故答案为:(-3,-2);(3,-1).【点睛】本题主要考查了坐标与图形变化—旋转变化,轴对称变化,画旋转图形和轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.7、(1)∠ACO;(2)点C的坐标为(0,).【分析】(1)由同角的余角相等,可得到∠ABC=ACO(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)∵OCAB,∠ACB=90°.∴∠ABC+BCO=ACO+BCO=90°,∴∠ABC=ACO故答案为:∠ACO(2)∵AC=3,BC=4,AB=5,∴三角形ABC是直角三角形,∠ACB=90°ABCO=ACBC,即CO==∴点C的坐标为(0,).【点睛】本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.8、(1)见解析;(2)【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2)【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.9、(1)画图见解析,;(2)【分析】(1)根据关于轴对称的点的坐标特征写出点的坐标,然后描点即可;(2)根据三角形面积公式,利用四边形的面积进行计算.【详解】解:(1)根据题意得:点关于轴的对称点分别为如图,为所作;(2)四边形的面积【点睛】本题主要考查了图形的变换——轴对称,坐标与图形,熟练掌握轴对称图形的关键是找到对称轴,图形关于对称轴折叠前后对应线段,对应角相等是解题的关键.10、(1)见解析;(2)见解析;(3)4.【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△ABC′;(3)利用面积加减法计算.(1)如图所示:(2)解:如图所示:(3)解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,故答案为:4.【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习,共32页。试卷主要包含了点A个单位长度.,在平面直角坐标系中,点P,根据下列表述,能确定位置的是,直角坐标系中,点A与点B关于等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试复习练习题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试复习练习题,共28页。试卷主要包含了在平面直角坐标系中,点P,平面直角坐标系中,点P,已知A,已知点P,点P等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题,共25页。试卷主要包含了在平面直角坐标系中,点,平面直角坐标系内一点P,点P的坐标为,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map