搜索
    上传资料 赚现金
    英语朗读宝

    难点详解沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含解析)

    难点详解沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含解析)第1页
    难点详解沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含解析)第2页
    难点详解沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含解析)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第十五章 平面直角坐标系综合与测试课后测评

    展开

    这是一份初中第十五章 平面直角坐标系综合与测试课后测评,共31页。试卷主要包含了平面直角坐标系内一点P,已知点A,点P的坐标为,平面直角坐标系中,点P等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系专题训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )
    A.正东方向 B.正西方向 C.正南方向 D.正北方向
    2、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )

    A.(a,b) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)
    3、如图,的顶点坐标为,,,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( ).

    A. B. C. D.
    4、平面直角坐标系内一点P(﹣3,2)关于原点对称的点的坐标是(  )
    A.(2,﹣3) B.(3,﹣2) C.(﹣2,﹣3) D.(2,3)
    5、已知点A(x+2,x﹣3)在y轴上,则x的值为(  )
    A.﹣2 B.3 C.0 D.﹣3
    6、点P的坐标为(﹣3,2),则点P位于( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    7、如图,矩形ABCD的边BC在x轴上,点A在第二象限,点D在第一象限,AB= ,OD=4,将矩形ABCD绕点O顺时针旋转,使点D落在x轴的正半轴上,则点C对应点的坐标是( )

    A.(,) B.(,) C.(,) D.(,)
    8、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )
    A.离北京市100千米 B.在河北省
    C.在怀来县北方 D.东经114.8°,北纬40.8°
    9、平面直角坐标系中,点P(,)和点Q(,)关于轴对称,则的值是( )
    A. B. C. D.
    10、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )
    A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,等边三角形ABC,BC的高AD=4cm,点P为AD上一动点,E为AB边的中点,则BP+EP的最小值_________.

    2、已知,点A(a+1,2)、B(3,b-1)两点关于x轴对称,则C(a,b)的坐标是______.
    3、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.

    4、点在直角坐标系的轴上,等于 ____.
    5、在平面直角坐标系中,点P(2,﹣3)到x轴的距离为 ___.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).
    (1)画出△ABC关于x轴的对称图形△A1B1C1;
    (2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出其顶点坐标;
    (3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是__________________.

    2、如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1).

    (1)请在图中画出△ABC关于y轴对称的△A1B1C1,
    (2)并写出△A1B1C1的各点坐标.
    3、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
    已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).

    (1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
    (2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
    (3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
    4、如图,在平面直角坐标系中,点A的坐标为A(0,6),点B的坐标为B(8, 0),点P从点A出发,沿折线A→O→B以每秒1个单位长度的速度向终点B运动;点Q从B点出发,沿折线B→O→A以每秒3个单位长度的速度向终点A运动.P,Q两点同时出发,当其中一点到达终点时另一点也停止运动.直线l经过原点O,分别过P,Q两点作PE⊥l于E,QF⊥l于点F,设点P的运动时间为t(秒):
    (1)当P,Q两点相遇时,求t的值;
    (2)在整个运动过程中,用含t的式子表示Q点的坐标;
    (3)在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能否全等?若能全等,请求出Q点的坐标,若不能全等,请说明理由.

    5、如图所示的方格纸中,每个小方格的边长都是,点,,.
    (1)作关于轴对称的;
    (2)通过作图在轴上找出点,使最小,并直接写出点的坐标.

    6、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).

    (1)如图1,在BC上找一点P,使∠BAP=45°;
    (2)如图2,作△ABC的高BH.
    7、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:
    (1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.
    (2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.

    8、如图,三角形的项点坐标分别为,,.

    (1)画出三角形关于点的中心对称的,并写出点的坐标;
    (2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标.
    9、如图,图中的小方格都 是边长为1的正方形,△ABC的顶点坐标为A、B、C三点.
    (1)写出顶点A、B、C三点的坐标;
    (2)请在图中画出△ABC关于y轴对称的图形△A′B′C′;
    (3)写出点B′和点C′的坐标.

    10、如图,在平面直角坐标系中,A(1,4)、B(2,1)、C(﹣3,2).
    (1)作△ABC关于x轴对称图形△A'B'C';
    (2)求△CAA'的面积.


    -参考答案-
    一、单选题
    1、B
    【分析】
    根据二人向同一方向走的距离可知二人的方向关系,解答即可.
    【详解】
    解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.

    【点睛】
    本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.
    2、D
    【分析】
    根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.
    【详解】
    解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),
    ∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,
    ∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).
    故选:D.
    【点睛】
    此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.
    3、A
    【分析】
    画出旋转平移后的图形即可解决问题.
    【详解】
    解:旋转,平移后的图形如图所示,,

    故选:A
    【点睛】
    本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.
    4、B
    【分析】
    根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(﹣x,﹣y),进而得出答案.
    【详解】
    解答:解:点P(﹣3,2)关于原点对称的点的坐标是:(3,﹣2).
    故选:B.
    【点睛】
    此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.
    5、A
    【分析】
    根据y轴上点的横坐标为0列方程求解即可.
    【详解】
    解:∵点A(x+2,x﹣3)在y轴上,
    ∴x+2=0,
    解得x=-2.
    故选:A.
    【点睛】
    本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
    6、B
    【分析】
    根据平面直角坐标系中四个象限中点的坐标特点求解即可.
    【详解】
    解:∵点P的坐标为(﹣3,2),
    ∴则点P位于第二象限.
    故选:B.
    【点睛】
    此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
    7、B
    【分析】
    由矩形可知AB=CD=,再由勾股定理可知OC=2,则C点坐标为(2,0),D点坐标为(2,),旋转后D’点坐标为(4,0),则C’点坐标为(1,).
    【详解】
    ∵四边形ABCD为矩形
    ∴AB=CD=,∠DOC=60°
    在中有

    则C点坐标为(2,0),D点坐标为(2,)
    又∵旋转后D点落在x轴的正半轴上
    ∴可看作矩形ABCD中绕点O顺时针旋转了60°得到
    如图所示,过C’作y轴平行线交x轴于点M
    其中∠DOC=∠D’OC’=60°,∠OMC’=90°,OC=OC’=2
    ∴OM==1,MC’==
    ∴C’坐标为(1,).

    故选:B.
    【点睛】
    本题考查了旋转的性质,得出矩形ABCD绕点O顺时针旋转了60°是解题的关键.
    8、D
    【分析】
    若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.
    【详解】
    离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,
    东经114.8°,北纬40.8°为准确的位置信息.
    故选:D.
    【点睛】
    本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.
    9、A
    【分析】
    根据题意直接利用关于x轴对称点的性质得出a,b的值,进而代入计即可得出答案.
    【详解】
    解:∵点P(,)和点Q(,)关于轴对称,
    ∴,
    ∴.
    故选:A.
    【点睛】
    本题考查关于x轴的对称点的坐标特点,注意掌握关于x轴的对称点的坐标特点为横坐标不变,纵坐标互为相反数.
    10、A
    【分析】
    关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.
    【详解】
    解:点(2,3)关于x轴对称的是
    故选A
    【点睛】
    本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.
    二、填空题
    1、4cm
    【分析】
    先连接,再根据,将转化为,最后根据两点之间线段最短,求得的长,即为的最小值.
    【详解】
    解:连接,

    等边中,是边上的高,
    是边上的中线,即垂直平分

    当、、三点共线时,,
    等边中,是边的中点,

    的最小值为4,
    故答案为:4cm.
    【点睛】
    本题主要考查了等边三角形的轴对称性质和勾股定理的应用等知识,解题的关键是熟练掌握和运用等边三角形的性质以及轴对称的性质,解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.
    2、(2,-1)
    【分析】
    根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而可得答案.
    【详解】
    解:∵点A(a+1,2)、B(3,b-1)两点关于x轴对称,
    ∴a+1=3,b-1=-2,
    解得:a=2,b=-1,
    ∴C的坐标是(2,-1),
    故答案为:(2,-1).
    【点睛】
    本题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标变化规律.
    3、
    【分析】
    直接利用已知点坐标得出原点位置,进而得出答案.
    【详解】
    解:如图所示,建立平面直角坐标系,
    ∴轰炸机C的坐标为(-1,-2),
    故答案为:(-1,-2).

    【点睛】
    此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..
    4、-1
    【分析】
    让纵坐标为0得到m的值,计算可得点P的坐标.
    【详解】
    解:∵点P(3,m+1)在直角坐标系x轴上,
    ∴m+1=0,
    解得m=-1,
    故选:-1.
    【点睛】
    考查点的坐标的确定;用到的知识点为:x轴上点的纵坐标为0.
    5、3
    【分析】
    根据点的纵坐标的绝对值是点到轴的距离,可得答案.
    【详解】
    在平面直角坐标系中,点P(2,﹣3)到轴的距离为3.
    故答案为:3.
    【点睛】
    本题考查了点的坐标,点的纵坐标的绝对值是点到轴的距离,横坐标的绝对值是点到轴的距离.
    三、解答题
    1、(1)见解析;(2)A2(-2,0),B2(-1,3),C2(1,2),(3)P(m-3,-n)
    【分析】
    (1)直接利用关于轴对称点的性质得出答案;
    (2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;
    (3)直接利用平移变换的性质得出点的坐标.
    【详解】
    解:(1)如图所示:△就是所要求作的图形;
    (2)如图所示:△就是所要求作的图形,其顶点坐标为A2(-2,0),B2(-1,3),C2(1,2);
    (3)如果上有一点经过上述两次变换,那么对应上的点的坐标是:.
    故答案为:.

    【点睛】
    此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.
    2、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1).
    【分析】
    (1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;
    (2)根据所作图形可得答案.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求作.

    (2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).
    【点睛】
    本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
    3、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
    【分析】
    (1)根据一次反射点和二次反射点的定义求解即可;
    (2)根据二次反射点的意义求解即可;
    (3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
    【详解】
    解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
    点A关于直线:x=2的二次反射点为(5,1)
    故答案为: (-1,1);(5,1).
    (2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,

    解得,
    故答案为: -2.
    (3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
    当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
    ∵当与点B重合时,=-2,
    ∴当<-2时,△与△BCD无公共点.
    当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
    ∵当与点D重合时,=1,
    ∴当>1时,△与△BCD无公共点.
    综上,若△与△BCD无公共点,的取值范围是<-2,或>1.

    【点睛】
    本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
    4、(1)秒;(2)Q(,0)或 Q(0,);(3)能全等,(5,0)或(0,)
    【分析】
    (1)由P,Q两点相遇即P,Q两点运动的路程和为OB+OA=8+6,据此列方程求解即可;
    (2)分点Q在线段OB上和在线段OA上两种情况讨论,即可求解;
    (2)分三种情况讨论,根据全等三角形的性质即可求解.
    【详解】
    解:(1)∵点A的坐标为A(0,6),点B的坐标为B(8, 0),
    ∴OA=6,OB=8,
    根据题意得:,
    ∴,
    解得:
    ∴当P,Q两点相遇时,的值为秒;
    (2)∵点Q可能在线段OB上,也可能在线段OA上.
    ∴①当点Q在线段OB上时:Q(8-3t,0);
    ②当点Q在线段OA上时:Q(0,3t-8);
    综上,Q点的坐标为(8-3t,0)或(0,3t-8);
    (3)答:在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能全等.
    理由:①当时,点Q在OB上,点P在OA上,
    ∵∠PEO=∠QFO=90°,
    ∴∠POE+∠QOF=90°,∠OQF+∠QOF=90°,
    ∴∠POE=∠OQF,
    ∴△POE≌△OQF,
    ∴PO=QO,即:,
    解得:t=1;
    ②当时,点Q在OA上,点P也在OA上,
    ∵∠PEO=∠QFO=90°,
    ∠POE=∠QOF(公共角),即P,Q重合时,△POE≌△QOF,
    ∴PO=QO,即:,
    解得:;
    当点Q运动到A点时,P点还未到达O点,所以不存在这种种情况
    ∵当t=1时,点Q在x轴上,(5,0);
    当t=时,点Q在y轴上,(0,)
    ∴当Q点坐标为(5,0)或(0,)时,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形全等.
    【点睛】
    本题考查了坐标与图形,全等三角形的性质,一元一次方程的应用,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
    5、(1)见解析;(2)见解析,点P的坐标为(−3,0)
    【分析】
    (1)先分别作出点A、B、C关于y轴的对称点,然后再顺次连接可得;
    (2)作点A关于x轴的对称点A″,再连接A″C交x轴于点P,再确定点P的坐标即可.
    【详解】
    解:(1)如图所示:即为所求.

    (2)作点A关于x轴的对称点A′′,连结A′′C,交x轴于点P,点P即为所求,点P的坐标为(−3,0)

    【点睛】
    本题主要考查作图﹣轴对称变换,熟练掌握轴对称变换的定义和性质及最短路径问题是解答本题的关键.
    6、(1)见解析;(2)见解析
    【分析】
    (1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;
    (2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.
    【详解】
    解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求,

    理由如下:
    根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,
    ∴△ABM≌△BNQ,
    ∴AB=BN,∠ABM=∠BNQ,
    ∴∠BAP=∠BNP,
    ∵∠NBQ+∠BNQ=90°,
    ∴∠ABM +∠BNQ=90°,
    ∴∠ABN=90°,
    ∴∠BAP=∠BNP=45°;
    (2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.

    理由如下:
    过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,
    ∴△ACD≌△QBG,
    ∴∠ACD=∠QBG,
    ∵∠QBG+∠BQG=90°,
    ∴∠ACD +∠BQG=90°,
    ∴∠CHQ=90°,
    ∴BH⊥AC,即BH为△ABC的高.
    【点睛】
    本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
    7、(1)6,30°;(2)见解析,30
    【分析】
    (1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
    (2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.
    【详解】
    (1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.
    答案:6,30°
    (2)如图所示:

    ∵A(5,30),B(12,120),
    ∴∠BOX=120°,∠AOX=30°,
    ∴∠AOB=90°,
    ∵OA=5,OB=12,
    ∴△AOB的面积为OA·OB=30.
    【点睛】
    本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.
    8、(1)图见解析,;(2)图见解析,
    【分析】
    (1)写出,,关于原点对称的点,,,连接即可;
    (2)连接OC,OB,根据旋转的90°可得,,,,,即可;
    【详解】
    (1),,关于原点对称的点,,,作图如下;
    (2)连接OC,OB,根据旋转的90°可得,,,,,,其中点C2的坐标是(3,-1),作图如下:

    【点睛】
    本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键.
    9、(1)A( 0, -2 ),B( 3 , -1 ),C( 2, 1 );(2)图见解析;(3)(-3,-1 ),(-2,1 )
    【分析】
    (1)根据三角形在坐标中的位置可得;
    (2)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;
    (3)利用点的坐标的表示方法求解.
    【详解】
    解:(1)△ABC的各顶点坐标:A(0,-2)、B(3,-1)、C(2,1);
    (2)△A′B′C′如图所示:
    (3)(-3,-1 ),(-2,1 ).

    【点睛】
    本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.
    10、(1)见解析;(2)16
    【分析】
    (1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;
    (2)直接根据三角形的面积公式求解即可.
    【详解】
    解:(1)如图所示,△A'B'C'即为所求.

    (2)△CAA'的面积为×8×4=16.
    【点睛】
    本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义和性质.

    相关试卷

    数学七年级下册第十五章 平面直角坐标系综合与测试课后复习题:

    这是一份数学七年级下册第十五章 平面直角坐标系综合与测试课后复习题,共30页。试卷主要包含了点P关于原点对称的点的坐标是,已知点在一,已知点A,点P的坐标为等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共30页。试卷主要包含了若点P,已知点A,若点在第三象限,则点在.,点P关于原点O的对称点的坐标是,在平面直角坐标系中,点在等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试习题,共29页。试卷主要包含了如图,A,已知点在一,点P关于原点对称的点的坐标是,若点P,在平面直角坐标系中,点P等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map