开学活动
搜索
    上传资料 赚现金

    难点详解沪教版七年级数学第二学期第十五章平面直角坐标系章节测试试题(含解析)

    难点详解沪教版七年级数学第二学期第十五章平面直角坐标系章节测试试题(含解析)第1页
    难点详解沪教版七年级数学第二学期第十五章平面直角坐标系章节测试试题(含解析)第2页
    难点详解沪教版七年级数学第二学期第十五章平面直角坐标系章节测试试题(含解析)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十五章 平面直角坐标系综合与测试课堂检测

    展开

    这是一份2021学年第十五章 平面直角坐标系综合与测试课堂检测,共32页。试卷主要包含了一只跳蚤在第一象限及x轴等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为( )
    A.2B.﹣2C.3D.﹣3
    2、已知A(2,5),若B是x轴上的一动点,则A、B两点间的距离的最小值为( )
    A.2B.3C.3.5D.5
    3、点在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )
    A.(2020,﹣2)B.(2020,1)C.(2021,1)D.(2021,﹣2)
    5、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1) →(1,0)→ … ],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )
    A.(4,0)B.(5,0)C.(0,5)D.(5,5)
    6、在平面直角坐标系中,点关于原点对称的点的坐标是( )
    A.B.C.D.
    7、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )
    A.离北京市100千米B.在河北省
    C.在怀来县北方D.东经114.8°,北纬40.8°
    8、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )
    A.5B.1C.D.
    9、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
    A.(0,2)B.(0,0)C.(2,﹣2)D.(﹣2,2)
    10、如图,在坐标系中用手盖住一点,若点到轴的距离为2,到轴的距离为6,则点的坐标是( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若点在y轴上,则m=_____.
    2、在平面直角坐标系中,点与,关于y轴对称,则的值为____________.
    3、在平面直角坐标系中,若点P关于x轴的对称点Q的坐标是(﹣3,2),则点P关于y轴的对称点R的坐标是_____.
    4、已知点A(a,﹣3)是点B(﹣2,b)关于原点O的对称点,则a+b=_____.
    5、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.
    (1)请写出△ABC各点的坐标A B C ;
    (2)若把△ABC向上平移2个单位,再向右平移2个单位得,在图中画出,
    (3)求△ABC 的面积
    2、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.
    (1)在图中作出关于轴对称的,并写出点的对应点的坐标;
    (2)在图中作出关于轴对称的,并写出点的对应点的坐标.
    3、(探索发现)等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、B分别是y轴、x轴上两个动点, 直角边 AC 交x轴于点D,斜边BC交y轴于点E
    (1)如图1,已知C点的横坐标为﹣1,请直接写出点A的坐标
    (2)如图2,当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE
    (拓展应用)
    (3)如图3,若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、 AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请直接写出BP的长度为
    4、已知点P(3a﹣15,2﹣a).
    (1)若点P到x轴的距离是1,试求出a的值;
    (2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;
    (3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.
    5、如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0).
    (1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;
    (2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并写出点E的坐标;
    (3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,
    ①画出线段MN并写出点M的坐标;
    ②直接写出线段MN与线段CD的位置关系.
    6、如图,在平面直角坐标系中,△ABC的三个项点坐标分别为A(1,1)、B(3,4)、C(4,2).
    (1)在图中画出△ABC关于y轴对称的△A1B1C1;
    (2)通过平移,使B1移动到原点O的位置,画出平移后的△A2B2C2.
    (3)在△ABC中有一点P(a,b),则经过以上两次变换后点P的对应点P2的坐标为_______.
    7、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
    (1)求证:△AOB≌△COD;
    (2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
    (3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
    8、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且
    (1)求证:点A为线段BC的中点.
    (2)求点D的坐标.
    9、已知:如图,在平面直角坐标系中.
    (1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );
    (2)直接写出△ABC的面积为 ;
    (3)在x轴上画点P,使PA+PC最小.
    10、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,5),B(1,1),C(3,2)
    (1)画出△ABC关于轴对称的△A1B1C1的图形及各顶点的坐标;
    (2)画出△ABC关于轴对称的△A2B2C2的图形及各顶点的坐标;
    (3)求出△ABC的面积.
    -参考答案-
    一、单选题
    1、C
    【分析】
    根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.
    【详解】
    解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,
    ∴a=3,
    故选:C.
    【点睛】
    此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.
    2、D
    【分析】
    当AB⊥x轴时,AB距离最小,最小值即为点A纵坐标的绝对值,据此可得.
    【详解】
    解:∵A(﹣2,5),且点B是x轴上的一点,
    ∵当AB⊥x轴时,AB距离最小,即B点(-2,0)
    ∴A、B两点间的距离的最小值5.
    故选:D.
    【点睛】
    本题考查了直线外一点与直线上各点连接的所有线段中,垂线段最短;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
    3、C
    【分析】
    根据各象限内点的坐标特征解答.
    【详解】
    解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.
    故选:C.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
    4、B
    【分析】
    观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.
    【详解】
    解:点的运动规律是每运动四次向右平移四个单位,

    动点第2021次运动时向右个单位,
    点此时坐标为,
    故选:B.
    【点睛】
    本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.
    5、C
    【分析】
    根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案.
    【详解】
    解:由题意可知,质点每秒移动一个单位
    质点到达(1,0)时,共用3秒;
    质点到达(2,0)时,共用4秒;
    质点到达(0,2)时,共用4+4=8秒;
    质点到达(0,3)时,共用9秒;
    质点到达(3,0)时,共用9+6=15秒;
    以此类推,质点到达(4,0)时,共用16秒;
    质点到达(0,4)时,共用16+8=24秒;
    质点到达(0,5)时,共用25秒;
    故选:C.
    【点睛】
    本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.找出规律是解题的关键.
    6、A
    【分析】
    关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.
    【详解】
    解:点关于原点对称的点的坐标是:
    故选A
    【点睛】
    本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.
    7、D
    【分析】
    若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.
    【详解】
    离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,
    东经114.8°,北纬40.8°为准确的位置信息.
    故选:D.
    【点睛】
    本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.
    8、D
    【分析】
    点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算a,b计算即可.
    【详解】
    ∵点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,
    ∴a=-3,b=-2,
    ∴-5,
    故选D.
    【点睛】
    本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键.
    9、A
    【分析】
    由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
    【详解】
    解:由题意可知BO=CO,
    ∵又AB=AC,
    ∴AO⊥BC,
    ∴点A在y轴上,
    ∴选项A符合题意,
    B选项三点共线,不能构成三角形,不符合题意;
    选项C、D都不在y轴上,不符合题意;
    故选:A.
    【点睛】
    本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
    10、C
    【分析】
    首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标.
    【详解】
    解:∵P点在第四象限,
    ∴P点横坐标大于0,纵坐标小于0,
    ∵P点到x轴的距离为2,到y轴的距离为6,
    ∴P点的坐标为(6,-2),
    故选C.
    【点睛】
    本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征.
    二、填空题
    1、-4
    【分析】
    在轴上点的坐标,横坐标为,可知,进而得到的值.
    【详解】
    解:在轴上
    故答案为:.
    【点睛】
    本题考察了坐标轴上点坐标的特征.解题的关键在于理解轴上点坐标的形式.在轴上点的坐标,横坐标为;在轴上点的坐标,纵坐标为.
    2、5
    【分析】
    关于轴对称的两个点的横坐标互为相反数,纵坐标不变,根据原理直接求解的值,再代入进行计算即可.
    【详解】
    解: 点与,关于y轴对称,


    故答案为:5
    【点睛】
    本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.
    3、
    【分析】
    根据题意直接利用关于x轴、y轴对称点的性质进行分析即可得出答案.
    【详解】
    解:∵点P关于x轴的对称点Q的坐标是(﹣3,2),
    ∴点P的坐标为(﹣3,﹣2),
    ∴点P关于y轴的对称点R的坐标是(3,﹣2),
    故答案为:(3,﹣2).
    【点睛】
    本题主要考查关于x轴、y轴对称点的性质,正确掌握横、纵坐标的关系是解题的关键.
    4、5
    【分析】
    根据关于原点对称的点的特点可得a,b的值,相加即可.
    【详解】
    解:∵点A(a,﹣3)是点B(﹣2,b)关于原点O的对称点,
    ∴a=2,b=3,
    ∴a+b=5.
    故答案为5.
    【点睛】
    本题考查了关于原点对称的点的特点,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.
    5、
    【分析】
    绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
    【详解】
    解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是
    故答案为:
    【点睛】
    本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.
    三、解答题
    1、(1);(2)见解析;(3)7
    【分析】
    (1)根据平面直角坐标系直接写出点的坐标即可;
    (2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求
    (3)根据长方形减去三个三角形的面积即可求得△ABC 的面积
    【详解】
    (1)根据平面直角坐标系可得
    故答案为:
    (2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求
    (3)的面积等于
    【点睛】
    本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键.
    2、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).
    【分析】
    (1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;
    (2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),
    然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.
    【详解】
    解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
    关于轴对称的,
    关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,
    ∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),
    在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),
    顺次连接A1B1, B1C1,C1A1,
    则为所求,点B1(-5,-1);
    (2)∵关于轴对称的,
    ∴点的坐标特征是横坐标互为相反数,纵坐标不变,
    ∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
    ∴中点A2(6,6),点B2(5,1),点C2(1,6),
    在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),
    顺次连接A2B2, B2C2,C2A2,
    则为所求,点B2(5,1).
    【点睛】
    本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
    3、(1)A(0,1);(2)见解析;(3)不变,2
    【分析】
    (1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△BAO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;
    (2)过点C作CG⊥AC交y轴于点G,则△ACG≌△BAD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论;
    (3)BP的长度不变,理由如下:如图(3),过点C作CH⊥y轴于点H,构建全等三角形:△CBH≌△BAO(AAS),结合全等三角形的对应边相等推知:CH=BO,BH=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPH≌△DPB,故BP=HP=2.
    【详解】
    解:(1)如图(1),过点C作CF⊥y轴于点F,
    ∵CF⊥y轴于点F,
    ∴∠CFA=90°,∠ACF+∠CAF=90°,
    ∵∠CAB=90°,
    ∴∠CAF+∠BAO=90°,
    ∴∠ACF=∠BAO,
    在△ACF和△ABO中,

    ∴△ACF≌△BAO(AAS),
    ∴CF=OA=1,
    ∴A(0,1);
    (2)如图2,过点C作CG⊥AC交y轴于点G,
    ∵CG⊥AC,
    ∴∠ACG=90°,∠CAG+∠AGC=90°,
    ∵∠AOD=90°,
    ∴∠ADO+∠DAO=90°,
    ∴∠AGC=∠ADO,
    在△ACG和△ABD中,,
    ∴△ACG≌△BAD(AAS),
    ∴CG=AD=CD,∠ADB=∠AGC,
    ∵∠ACB=45°,∠ACG=90°,
    ∴∠DCE=∠GCE=45°,
    在△DCE和△GCE中,,
    ∴△DCE≌△GCE(SAS),
    ∴∠CDE=∠AGC,
    ∴∠ADB=∠CDE;
    (3)BP的长度不变,理由如下:
    如图,过点C作CH⊥y轴于点H.

    ∵∠ABC=90°,
    ∴∠CBH+∠ABO=90°.
    ∵∠BAO+∠ABO=90°,
    ∴∠CBH=∠BAO.
    ∵∠CHB=∠AOB=90°,AB=AC,
    ∴△CBH≌△BAO(AAS),
    ∴CH=BO,BH=AO=4.
    ∵BD=BO,
    ∴CH=BD.
    ∵∠CHP=∠DBP=90°,∠CPE=∠DPB,
    ∴△CPH≌△DPB(AAS),
    ∴BP=HP=2.
    故答案为:2.
    【点睛】
    本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形.
    4、(1)或;(2)或;(3)或.
    【分析】
    (1)根据“点到轴的距离是1”可得,由此即可求出的值;
    (2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;
    (3)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案.
    【详解】
    解:(1)点到轴的距离是1,且,
    ,即或,
    解得或;
    (2)当时,点的坐标为,
    则点的坐标为,即,
    当时,点的坐标为,
    则点的坐标为,即,
    综上,点的坐标为或;
    (3)点位于第三象限,
    ,解得,
    点的横、纵坐标都是整数,
    或,
    当时,,则点的坐标为,
    当时,,则点的坐标为,
    综上,点的坐标为或.
    【点睛】
    本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键.
    5、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)①作图见解析,点M的坐标为(1,-5);②MN∥CD.
    【分析】
    (1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;
    (2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;
    (3)①分别作出A,B的对应点M,N,连接即可;
    ②由平行线的传递性可得答案.
    【详解】
    解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);
    (2)如图所示,线段AE即为所求,点E的坐标为(3,3);
    (3)①如图所示,线段MN即为所求,点M的坐标为(1,-5);
    ②∵线段MN与线段AB关于原点成中心对称,
    ∴MN∥AB,
    ∵线段CD是由线段AB平移得到的,
    ∴CD∥AB,
    ∴MN∥CD.
    【点睛】
    本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题.
    6、(1)见解析;(2)见解析;(3)
    【分析】
    (1)关于y轴对称可知,对应点纵坐标不变,横坐标互为相反数,由此可作出;
    (2)由移动到原点O的位置可知,对应点向右平移了3个单位,向下平移了4个单位,由此可作出;
    (3)根据两次变换可知,点P先关于y轴对称,再进行平移,即先纵坐标不变,横坐标互为相反数,再向右平移了3个单位,最后向下平移了4个单位,即可得到的坐标.
    【详解】
    (1)如图所示,即为所作;
    (2)如图所示,即为所作;
    (3)点关于y轴对称得,
    向右平移3个单位,再向下平移4个单位得.
    故答案为:.
    【点睛】
    本题考查平移与轴对称变换,掌握平移和轴对称的性质是解题的关键.
    7、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)根据即可证明;
    (2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
    (3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
    【详解】
    (1)轴于点,轴于点,

    ,,
    ,,

    (2)
    如图2,过点作轴,交于点,


    轴,



    ,,,

    在与中,


    ,即点为中点;
    (3)
    如图3,延长到,使,连接,,延长交于点,
    ,,,

    ,,





    ,,




    ,,

    ,即.
    【点睛】
    本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
    8、(1)证明见解析,(2)(8,2).
    【分析】
    (1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;
    (2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.
    【详解】
    (1)证明:过点C作CQ⊥OA于Q,
    ∵点B的坐标是,点C的坐标为,
    ∴CQ=OB=4,
    ∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,
    ∴△CQA≌△BOA,
    ∴CA=AB,
    ∴点A为线段BC的中点.
    (2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,
    ∵,
    ∴∠CRB=∠DSB=∠CBD=90°,
    ∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,
    ∴∠CBR=∠SDB,
    ∵,
    ∴∠BCD=∠BDC=45°,
    ∴CB=DB,
    ∴△CRB≌△BSD,
    ∴CR=SB,RB=DS,
    ∵点B的坐标是,点C的坐标为,
    ∴CR=SB=6,RB=DS=8,
    ∴OS=SB-OB=2,
    点D的坐标为(8,2).
    【点睛】
    本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.
    9、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析
    【分析】
    (1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
    (2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;
    (3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.
    【详解】
    解:(1)如图所示:△A1B1C1即为所求,
    A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);
    故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);
    (2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;
    故答案为:5;
    (3)如图所示:点P即为所求.
    【点睛】
    本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.
    10、(1)图见解析, A1(2,-5)B1(1,-1),C1(3,-2) ; (2)图见解析,A2(-2,5),B2(-1,1),C2(-3,2);(3)3.5
    【分析】
    (1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得,然后写出坐标;
    (2)分别作出点A、B、C关于y轴的对称点,再顺次连接可得,然后写出坐标;
    (3)利用割补法求解可得.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求,
    A1(2,-5),B1(1,-1),C1(3,-2) ;
    (2)如图所示,△A2B2C2即为所求,
    A2(-2,5),B2(-1,1),C2(-3,2);
    (3)△ABC的面积==3.5.
    【点睛】
    本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.

    相关试卷

    2020-2021学年第十五章 平面直角坐标系综合与测试同步训练题:

    这是一份2020-2021学年第十五章 平面直角坐标系综合与测试同步训练题,共30页。试卷主要包含了若点P,点P,在平面直角坐标系中,点,点A个单位长度.,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    数学七年级下册第十五章 平面直角坐标系综合与测试课后测评:

    这是一份数学七年级下册第十五章 平面直角坐标系综合与测试课后测评,共31页。试卷主要包含了如果点P,若点在第三象限,则点在.等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共30页。试卷主要包含了若点P,已知点A,若点在第三象限,则点在.,点P关于原点O的对称点的坐标是,在平面直角坐标系中,点在等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map