![精品试卷沪教版七年级数学第二学期第十五章平面直角坐标系同步测试练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12712365/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷沪教版七年级数学第二学期第十五章平面直角坐标系同步测试练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12712365/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷沪教版七年级数学第二学期第十五章平面直角坐标系同步测试练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12712365/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题
展开
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共29页。试卷主要包含了已知点M,平面直角坐标系内一点P,在平面直角坐标系中,点P等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若点在第一象限,则a的取值范围是( )
A. B. C. D.无解
2、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是( )
A.直线x=﹣1 B.x轴 C.y轴 D.直线x=
3、上海是世界知名金融中心,以下能准确表示上海市地理位置的是( )
A.在中国的东南方 B.东经,北纬 C.在中国的长江出海口 D.东经.
4、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、已知点M(m,﹣1)与点N(3,n)关于原点对称,则m+n的值为( )
A.3 B.2 C.﹣2 D.﹣3
6、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )
A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)
7、在平面直角坐标系中,若点与点关于原点对称,则点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、平面直角坐标系内一点P(﹣3,2)关于原点对称的点的坐标是( )
A.(2,﹣3) B.(3,﹣2) C.(﹣2,﹣3) D.(2,3)
9、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为( )
A.(2,﹣5) B.(﹣2,﹣5) C.(﹣2,5) D.(﹣5,2)
10、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )
A.(a,b) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点关于原点的对称点坐标为_______.
2、点与点关于x轴对称,则的值为___________.
3、已知点A的坐标为,O为坐标原点,连结OA,将线段OA绕点О顺时针旋转90°得到线段,则点的坐标为______.
4、若点关于原点的对称点是,则______.
5、平面直角坐标系中,点P(3,-4)到x轴的距离是________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,三角形的项点坐标分别为,,.
(1)画出三角形关于点的中心对称的,并写出点的坐标;
(2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标.
2、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).
(1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
(2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
(3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
3、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),△ABC关于y轴的对称图形为△A1B1C1
(1)请画出△ABC关于y轴对称图形△A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )
(2)在y轴上取点D,使得△ABD为等腰三角形,这样的点D共有 个
4、如图,在平面直角坐标系中,点A的坐标为A(0,6),点B的坐标为B(8, 0),点P从点A出发,沿折线A→O→B以每秒1个单位长度的速度向终点B运动;点Q从B点出发,沿折线B→O→A以每秒3个单位长度的速度向终点A运动.P,Q两点同时出发,当其中一点到达终点时另一点也停止运动.直线l经过原点O,分别过P,Q两点作PE⊥l于E,QF⊥l于点F,设点P的运动时间为t(秒):
(1)当P,Q两点相遇时,求t的值;
(2)在整个运动过程中,用含t的式子表示Q点的坐标;
(3)在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能否全等?若能全等,请求出Q点的坐标,若不能全等,请说明理由.
5、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(3,2).
(1)将△ABC向下平移四个单位长度,画出平移后的△A1B1C1;(点A、B、C的对应点分别是点A1、B1、C1);
(2)画出△A1B1C1关于y轴对称的△A2B2C2(点A1、B1、C1的对称点分别是点A2、B2、C2).
6、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).
(1)请在图中画出ABC;
(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;
(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 .
7、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
8、如图在平面直角坐标系中,△ABC各顶点的坐标分别为: A(4,0),B(﹣1,4),C(﹣3,1)
(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;
(2)求△ABC的面积
9、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).
(1)直接写出点B关于原点对称的点B′的坐标: ;
(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
10、如图所示,在平面直角坐标系中,的顶点坐标分别是,和.
(1)已知点关于轴的对称点的坐标为,求,的值;
(2)画出,且的面积为 ;
(3)画出与关于轴成对称的图形,并写出各个顶点的坐标.
-参考答案-
一、单选题
1、B
【分析】
由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.
【详解】
解: 点在第一象限,
由①得:
由②得:
故选B
【点睛】
本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.
2、B
【分析】
根据轴对称的性质判断即可.
【详解】
解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴
故选:B.
【点睛】
本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.
3、B
【分析】
根据有序数对的性质解答.
【详解】
解:能准确表示上海市地理位置的是东经,北纬,
故选:B.
【点睛】
此题考查了表示平面上点的位置的方法:有序数对,需用两个有序数量来表示某一位置,掌握有序数对的性质是解题的关键.
4、B
【分析】
设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.
【详解】
解:∵设内任一点A(a,b)在第三象限内,
∴a<0,b<0,
∵点A关于x轴对称后的点B(a,-b),
∴﹣b>0,
∴点B(a,-b)所在的象限是第二象限,即在第二象限.
故选:B.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
5、C
【分析】
利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.
【详解】
解:点与点关于原点对称,
,,
故.
故选:C.
【点睛】
本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.
6、B
【分析】
观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.
【详解】
解:点的运动规律是每运动四次向右平移四个单位,
,
动点第2021次运动时向右个单位,
点此时坐标为,
故选:B.
【点睛】
本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.
7、B
【分析】
根据点(x,y)关于原点对称的点的坐标为(﹣x,﹣y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答.
【详解】
解:∵点与关于原点对称,
∴m=-2,m-n=﹣3,
∴n=1,
∴点M(-2,1)在第二象限,
故选:B.
【点睛】
本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键.
8、B
【分析】
根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(﹣x,﹣y),进而得出答案.
【详解】
解答:解:点P(﹣3,2)关于原点对称的点的坐标是:(3,﹣2).
故选:B.
【点睛】
此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.
9、C
【分析】
关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.
【详解】
解:点P(2,5)关于y轴对称的点的坐标为:
故选:C
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.
10、D
【分析】
根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.
【详解】
解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),
∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,
∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).
故选:D.
【点睛】
此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.
二、填空题
1、(-4,7)
【分析】
根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),进而得出答案.
【详解】
解:点关于原点的对称点坐标为(-4,7),
故答案是:(-4,7).
【点睛】
此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
2、5
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a与b的值,再代入计算即可.
【详解】
解:点与点关于x轴对称,
,,
则,
故答案为.
【点睛】
此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.
3、(b,-a)
【分析】
设A在第一象限,画出图分析,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.根据旋转的性质,A1B1=AB,OB1=OB.综合A1所在象限确定其坐标,其它象限解法完全相同.
【详解】
解:设A在第一象限,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.
∵A(a,b),
∴OB=a,AB=b,
∴A1B1=AB=b,OB1=OB=a,
因为A1在第四象限,所以A1(b,﹣a),
A在其它象限结论也成立.
故答案为:(b,﹣a),
【点睛】
本题考查了图形的旋转,设点A在某一象限是解题的关键.
4、
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:由关于坐标原点的对称点为,得,
,
解得:
故答案为:.
【点睛】
本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
5、4
【分析】
根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.
【详解】
解:点P(3,-4)到x轴的距离为|﹣4|=4.
故答案为:4.
【点睛】
此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.
三、解答题
1、(1)图见解析,;(2)图见解析,
【分析】
(1)写出,,关于原点对称的点,,,连接即可;
(2)连接OC,OB,根据旋转的90°可得,,,,,即可;
【详解】
(1),,关于原点对称的点,,,作图如下;
(2)连接OC,OB,根据旋转的90°可得,,,,,,其中点C2的坐标是(3,-1),作图如下:
【点睛】
本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键.
2、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
【分析】
(1)根据一次反射点和二次反射点的定义求解即可;
(2)根据二次反射点的意义求解即可;
(3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
【详解】
解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
点A关于直线:x=2的二次反射点为(5,1)
故答案为: (-1,1);(5,1).
(2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,
∴
解得,
故答案为: -2.
(3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
∵当与点B重合时,=-2,
∴当<-2时,△与△BCD无公共点.
当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
∵当与点D重合时,=1,
∴当>1时,△与△BCD无公共点.
综上,若△与△BCD无公共点,的取值范围是<-2,或>1.
【点睛】
本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
3、(1)见解析;-1,4 ;-3,1;-3,5;(2)5
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;
(2)分AB为腰和AB为底分别求解可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求.
A1(-1,4) ;B1(-3,1);C1(-3,5);
故答案为:-1,4 ;-3,1;-3,5;
(2)以点A为顶点、AB为腰的等腰三角形ABD,且点D在y轴上的有2个;
以点B为顶点,BA为腰的等腰△ABD,且点D在y轴上的有2个;
以AB为底边的等腰三角形,且点D在y轴上的点只有1个;
所以这样的点D共有5个,
故答案为:5.
【点睛】
本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点.
4、(1)秒;(2)Q(,0)或 Q(0,);(3)能全等,(5,0)或(0,)
【分析】
(1)由P,Q两点相遇即P,Q两点运动的路程和为OB+OA=8+6,据此列方程求解即可;
(2)分点Q在线段OB上和在线段OA上两种情况讨论,即可求解;
(2)分三种情况讨论,根据全等三角形的性质即可求解.
【详解】
解:(1)∵点A的坐标为A(0,6),点B的坐标为B(8, 0),
∴OA=6,OB=8,
根据题意得:,
∴,
解得:
∴当P,Q两点相遇时,的值为秒;
(2)∵点Q可能在线段OB上,也可能在线段OA上.
∴①当点Q在线段OB上时:Q(8-3t,0);
②当点Q在线段OA上时:Q(0,3t-8);
综上,Q点的坐标为(8-3t,0)或(0,3t-8);
(3)答:在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能全等.
理由:①当时,点Q在OB上,点P在OA上,
∵∠PEO=∠QFO=90°,
∴∠POE+∠QOF=90°,∠OQF+∠QOF=90°,
∴∠POE=∠OQF,
∴△POE≌△OQF,
∴PO=QO,即:,
解得:t=1;
②当时,点Q在OA上,点P也在OA上,
∵∠PEO=∠QFO=90°,
∠POE=∠QOF(公共角),即P,Q重合时,△POE≌△QOF,
∴PO=QO,即:,
解得:;
当点Q运动到A点时,P点还未到达O点,所以不存在这种种情况
∵当t=1时,点Q在x轴上,(5,0);
当t=时,点Q在y轴上,(0,)
∴当Q点坐标为(5,0)或(0,)时,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形全等.
【点睛】
本题考查了坐标与图形,全等三角形的性质,一元一次方程的应用,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
5、(1)图见解析;(2)图见解析.
【分析】
(1)先根据平移分别画出点,再顺次连接即可得;
(2)先根据轴对称的性质画出点,再顺次连接即可得.
【详解】
解:(1)如图,即为所求;
(2)如图,即为所求.
【点睛】
本题考查了平移作图、画轴对称图形,熟练掌握平移和轴对称的作图方法是解题关键.
6、(1)见解析;(2)见解析;(3)(a-5,-b)
【分析】
(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出△ABC.
(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;
(3)根据点的坐标平移规律可得结论.
【详解】
解:(1)如图,ABC即为所画.
(2)如图,A1B1C1即为所画.
(3)点P(a,b)向左平移5个单位后的坐标为(a-5,b),关于x轴对称手点的坐标为(a-5,-b).
故答案为:(a-5,-b)
【点睛】
此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置.
7、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
【详解】
(1)轴于点,轴于点,
,
,,
,,
;
(2)
如图2,过点作轴,交于点,
,
,
轴,
,
,
,
,,,
,
在与中,
,
,
,即点为中点;
(3)
如图3,延长到,使,连接,,延长交于点,
,,,
,
,,
,
,
,
,
,
,,
,
,
,
,
,,
,
,即.
【点睛】
本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
8、(1)见解析;(2)11.5
【分析】
(1)直接利用关于x轴对称点的性质,进而得出答案;
(2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.
【详解】
解:(1)如图所示
(2)
【点睛】
此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.
9、(1)(4,﹣1);(2)见解析;(3)见解析.
【分析】
(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
【详解】
(1)点B关于原点对称的点B′的坐标为(4,﹣1),
故答案为:(4,﹣1);
(2)如图所示,△A1B1C1即为所求.
(3)如图所示,△A2B2C2即为所求.
【点睛】
本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
10、(1),;(2)作图见详解;13;(3)作图见详解;,,.
【分析】
(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;
(2)先确定A、B、C点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;
(3)先确定A、B、C三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可.
【详解】
解:(1)∵点关于x轴的对称点P的坐标为,
∴,;
(2)如图:即为所求,
SΔABC=8×4-12×1×8-12×3×2-12×6×4=13,
故答案为:13;
(3)如图:A、B、C点关于y轴的对称点为:,,,顺次连接,
∴即为所求
,,.
【点睛】
此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键.
相关试卷
这是一份初中第十五章 平面直角坐标系综合与测试当堂达标检测题,共27页。试卷主要包含了已知点A,在平面直角坐标系中,点P,在平面直角坐标系中,点在,已知点M,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题,共33页。试卷主要包含了若平面直角坐标系中的两点A等内容,欢迎下载使用。
这是一份初中第十五章 平面直角坐标系综合与测试课时作业,共32页。试卷主要包含了点关于轴对称的点的坐标是,如果点P等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)