![2022年最新强化训练沪教版七年级数学第二学期第十五章平面直角坐标系单元测试试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12712372/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练沪教版七年级数学第二学期第十五章平面直角坐标系单元测试试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12712372/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练沪教版七年级数学第二学期第十五章平面直角坐标系单元测试试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12712372/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第十五章 平面直角坐标系综合与测试单元测试复习练习题
展开
这是一份数学七年级下册第十五章 平面直角坐标系综合与测试单元测试复习练习题,共30页。试卷主要包含了点在第四象限,则点在第几象限,点关于轴对称的点的坐标是,在下列说法中,能确定位置的是,已知点M,点P关于y轴对称点的坐标是.等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是( )A.(-1,6) B.(-1,2) C.(-1,1) D.(4,1)2、小明在介绍郑州外国语中学位置时,相对准确的表述为( )A.陇海路以北 B.工人路以西C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角3、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)4、如图,每个小正方形的边长为1,在阴影区域的点是( ) A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)5、点在第四象限,则点在第几象限( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、点关于轴对称的点的坐标是( )A. B. C. D.7、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号8、已知点M(m,﹣1)与点N(3,n)关于原点对称,则m+n的值为( )A.3 B.2 C.﹣2 D.﹣39、点P(﹣1,2)关于y轴对称点的坐标是( ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)10、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为( )A.(0,1) B.(2,0) C.(2,﹣1) D.(2,3)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点A(m,﹣4)与点B(﹣5,n)关于y轴对称,则点(m,n)在第 _____象限.2、如图,直角坐标平面xoy内,动点P按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),…按这样的运动规律,动点P第2022次运动到点的坐标是_____.3、在平面直角坐标系中,点A(﹣3,1)绕原点逆时针旋转180°得到的点A'的坐标是 _____.4、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对,例如:数2在第2行第1列,记它的位置为有序数对.按照这种方式,(1)位置为有序数对的数是______;(2)数位置为有序数对______.5、在平面直角坐标系中点M(2,﹣4)关于原点对称的点的坐标为 _____.三、解答题(10小题,每小题5分,共计50分)1、已知点,解答下列各题.(1)点P在x轴上,求出点P的坐标;(2)点Q的坐标为=,直线轴;求出点P的坐标;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求的值.2、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且(1)求证:点A为线段BC的中点.(2)求点D的坐标.3、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.4、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为、、.(1)画出将关于点对称的图形;(2)写出点、、的坐标.5、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,(1)求的度数;(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、、,,且四边形的面积为25,求的长.6、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.7、在平面直角坐标系中,的顶点,,的坐标分别为,,.与关于轴对称,点,,的对应点分别为,,.请在图中作出,并写出点,,的坐标.8、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.(1)在图中作出关于轴对称的,并写出点的对应点的坐标;(2)在图中作出关于轴对称的,并写出点的对应点的坐标.9、如图,三角形的项点坐标分别为,,.(1)画出三角形关于点的中心对称的,并写出点的坐标;(2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标.10、如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且∠ACB=90°.(1)图中与∠ABC相等的角是 ;(2)若AC=3,BC=4,AB=5,求点C的坐标. -参考答案-一、单选题1、A【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】∵,,∴得到的点的坐标是.故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.2、D【分析】根据位置的确定需要两个条件:方向和距离进行求解即可.【详解】解:A、陇海路以北只有方向,不能确定位置,故不符合题意;B、工人路以西只有方向,不能确定位置,故不符合题意;C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;故选D.【点睛】本题主要考查了确定位置,熟知确定位置的条件是解题的关键.3、A【分析】根据点F点N关于原点对称,即可求解.【详解】解:∵F点与N点关于原点对称,点F的坐标是(3,2),∴N点坐标为(﹣3,﹣2).故选:A【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.4、C【分析】根据平面直角坐标系中点的坐标的表示方法求解即可.【详解】解:图中阴影区域是在第二象限,A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.故选:C.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.5、C【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、B【分析】根据两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,即可得答案.【详解】解:∵点A的坐标为(-2,-3),∴点A(-2,-3)关于x轴对称的点的坐标是(-2,3).故选:B.【点睛】本题是对坐标系中对称点的考查,熟记两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,是解题关键.7、D【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.8、C【分析】利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.【详解】解:点与点关于原点对称,,,故.故选:C.【点睛】本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.9、A【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A.【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.10、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.二、填空题1、四【分析】先根据关于y轴对称的点的特征:纵坐标相同,横坐标互为相反数求出m、n的值,再根据每个象限内点的坐标特点求解即可.【详解】解:∵点A(m,﹣4)与点B(﹣5,n)关于y轴对称,∴m=5,n=-4,∴点(m,n)即点(5,-4)在第四象限,故答案为:四.【点睛】本题主要考查了关于y轴对称的点的坐标特征,根据点的坐标判断点所在的象限,熟练掌握关于y轴对称的点的坐标特征是解题的关键.2、(2021,0)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2022除以4,再由商和余数的情况确定运动后点的坐标.【详解】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,∵2022÷4=505余2,∴第2022次运动为第505循环组的第2次运动,横坐标为,纵坐标为0,∴点P运动第2022次的坐标为(2021,0).故答案为:(2021,0).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.3、(3,﹣1)【分析】由条件可知A点和A′点关于原点对称,可求得答案.【详解】解:∵将OA绕原点O逆时针旋转180°得到OA′,∴A点和A′点关于原点对称,∵A(﹣3,1),∴A′(3,﹣1),故答案为:(3,﹣1).【点睛】本题主要考查旋转的定义,由条件求得A和A′关于原点对称是解题的关键.4、 (9,6) 【分析】根据题意,找出题目的规律,中含有4个数,中含有9个数,中含有16个数,……,中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.【详解】解:根据题意,如图:∴有序数对的数是;由图可知,中含有4个数,中含有9个数,中含有16个数;……∴中含有64个数,且奇数行都是从左边第一个数开始,∵,∴是第九行的第6个数;∴数位置为有序数对是(9,6).故答案为:;(9,6).【点睛】此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.5、【分析】根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解.【详解】解:点M(2,﹣4)关于原点对称的点的坐标为 故答案为:【点睛】本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键.三、解答题1、(1);(2);(3)【分析】(1)利用x轴上P点的纵坐标为0求解即可得;(2)利用平行于y轴的直线上的点的横坐标相等列方程求解即可;(3)在第二象限,且到x轴、y轴的距离相等的点的横纵坐标互为相反数,再利用相反数的性质列方程求解可得,将其代入代数式求解即可.(1)解:∵点P在x轴上,∴P点的纵坐标为0,∴,解得:,∴,∴.(2)解:∵直线轴,∴,解得:,∴,∴.(3)解:∵点P在第二象限,且它到x轴、y轴的距离相等,∴.解得:.∴,∴的值为2020.【点睛】本题主要考查平面直角坐标系内点的坐标特点.分别考查了坐标轴上点的坐标特点、平行于坐标轴的直线上点坐标的特点、到坐标轴距离相等的点的坐标特点,理解题意,熟练掌握坐标系中不同条件下的坐标特点是解题关键.2、(1)证明见解析,(2)(8,2).【分析】(1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.【详解】(1)证明:过点C作CQ⊥OA于Q,∵点B的坐标是,点C的坐标为,∴CQ=OB=4,∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,∴△CQA≌△BOA,∴CA=AB,∴点A为线段BC的中点.(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,∵,∴∠CRB=∠DSB=∠CBD=90°,∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,∴∠CBR=∠SDB,∵,∴∠BCD=∠BDC=45°,∴CB=DB,∴△CRB≌△BSD,∴CR=SB,RB=DS,∵点B的坐标是,点C的坐标为,∴CR=SB=6,RB=DS=8,∴OS=SB-OB=2,点D的坐标为(8,2).【点睛】本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.3、(1)6,30°;(2)见解析,30【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.【详解】(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.答案:6,30°(2)如图所示:∵A(5,30),B(12,120),∴∠BOX=120°,∠AOX=30°,∴∠AOB=90°,∵OA=5,OB=12,∴△AOB的面积为OA·OB=30.【点睛】本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.4、(1)见解析;(2),,.【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2),,.【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.5、(1);(2);(3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得【详解】(1)是等腰直角三角形,(2)①当点在轴正半轴时,如图,,, ,②当点在原点时,都在轴上,不能构成三角形,则时,不存在③当点在轴负半轴时,如图, ,, ,综上所述:(3)如图,过点作,连接,设,,则, 是等腰直角三角形在和中,是等腰直角三角形中,,又【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.6、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.7、作图见解析,点,点,点【分析】分别作出A,B,C的对应点,,即可.【详解】解: 如图所示.点,点,点.【点睛】本题考查了作图-轴对称变换,直角坐标系中表示点的坐标,熟知关于y轴对称的点的坐标特点是解答此题的关键.8、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).【分析】(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.【详解】解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),关于轴对称的,关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),顺次连接A1B1, B1C1,C1A1,则为所求,点B1(-5,-1);(2)∵关于轴对称的,∴点的坐标特征是横坐标互为相反数,纵坐标不变,∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),∴中点A2(6,6),点B2(5,1),点C2(1,6),在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),顺次连接A2B2, B2C2,C2A2,则为所求,点B2(5,1).【点睛】本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.9、(1)图见解析,;(2)图见解析,【分析】(1)写出,,关于原点对称的点,,,连接即可;(2)连接OC,OB,根据旋转的90°可得,,,,,即可;【详解】(1),,关于原点对称的点,,,作图如下;(2)连接OC,OB,根据旋转的90°可得,,,,,,其中点C2的坐标是(3,-1),作图如下:【点睛】本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键.10、(1)∠ACO;(2)点C的坐标为(0,).【分析】(1)由同角的余角相等,可得到∠ABC=∠ACO;(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)∵OC⊥AB,∠ACB=90°.∴∠ABC+∠BCO=∠ACO+∠BCO=90°,∴∠ABC=∠ACO;故答案为:∠ACO;(2)∵AC=3,BC=4,AB=5,∴三角形ABC是直角三角形,∠ACB=90°ABCO=ACBC,即CO==,∴点C的坐标为(0,).【点睛】本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.
相关试卷
这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试课堂检测,共27页。试卷主要包含了点P的坐标为,在平面直角坐标系中,点P,已知点A等内容,欢迎下载使用。
这是一份数学沪教版 (五四制)第十五章 平面直角坐标系综合与测试复习练习题,共30页。试卷主要包含了已知点A象限,已知点A,在平面直角坐标系中,点在,如图,A等内容,欢迎下载使用。
这是一份2021学年第十五章 平面直角坐标系综合与测试练习题,共27页。试卷主要包含了已知点A,点P关于原点对称的点的坐标是,点A关于y轴的对称点A1坐标是,在平面直角坐标系中,点,如果点P等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)