![2022年最新强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专题练习练习题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12712404/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专题练习练习题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12712404/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专题练习练习题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12712404/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习
展开
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习,共27页。试卷主要包含了直角坐标系中,点A与点B关于,已知A,将点P,已知点A,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,的顶点坐标为,,,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( ).A. B. C. D.2、平面直角坐标系中,将点A(,)沿着x的正方向向右平移()个单位后得到B点,则下列结论:①B点的坐标为(,);②线段AB的长为3个单位长度;③线段AB所在的直线与x轴平行;④点M(,)可能在线段AB上;⑤点N(,)一定在线段AB上.其中正确的结论有( )A.2个 B.3个 C.4个 D.5个3、点(a,﹣3)关于原点的对称点是(2,﹣b),则a+b=( )A.5 B.﹣5 C.1 D.﹣14、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A.原点中心对称 B.轴轴对称 C.轴轴对称 D.以上都不对5、已知A(2,5),若B是x轴上的一动点,则A、B两点间的距离的最小值为( )A.2 B.3 C.3.5 D.56、小明在介绍郑州外国语中学位置时,相对准确的表述为( )A.陇海路以北 B.工人路以西C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角7、将点P(2,﹣1)以原点为旋转中心,顺时针旋转90°得到点P',则点P'的坐标是( )A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(﹣1,﹣2)8、已知点A(a+9,2a+6)在y轴上,a的值为( )A.﹣9 B.9 C.3 D.﹣39、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )A.(2,-3) B.(-2,3) C.(3,2) D.(-2,-3)10、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.2、正方形ABCD在坐标系中的位置如图所示.A(0,3),B(2,4),C(3,2),D(1,10).将正方形ABCD绕D点旋转90°后,点B到达的位置坐标为_____.3、在平面直角坐标系中,点(-2,5)关于原点对称的点的坐标是___________.4、在平面直角坐标系中,点P(2,﹣3)到x轴的距离为 ___.5、若点在y轴上,则m=_____.三、解答题(10小题,每小题5分,共计50分)1、如图,ABCDx轴,且AB=CD=3,A点坐标为(-1,1),C点坐标为(1,-1),请写出点B,点D的坐标.2、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2).(1)画出△ABC关于原点O对称的△A1B1C1.(2)求△A1B1C1的面积.3、在平面直角坐标系中,△ABC各顶点的坐标分别是A(2,5),B(1,2),C(4,1).(1)作△ABC关于y轴对称后的△A′B′C′,并写出A′,B′,C′的坐标;(2)在y轴上有一点P,当△PBB'和△ABC的面积相等时,求点P的坐标.4、已知点P(3a﹣15,2﹣a).(1)若点P到x轴的距离是1,试求出a的值;(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.5、(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O.(2)如图②所示,已知△ABC的三个顶点的坐标分别为A(4,﹣1),B(1,1),C(3,﹣2).将△ABC绕原点O旋转180°得到△A1B1C1,请画出△A1B1C1,并写出点A1的坐标.6、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积.7、如图,平面直角坐标系中,的顶点都在格点上,已知点的坐标是.(1)点的坐标是______;(2)画出关于轴对称的,其中点、、的对应点分别为点、、;(3)直接写出的面积为______.8、如图,在平面直角坐标系中,的三个顶点均在格点上.(1)在网格中作出关于轴对称的图形;(2)直接写出以下各点的坐标:________,________,________;(3)网格的单位长度为1.则________.9、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2的坐标.10、如图所示,在平面直角坐标系中,的顶点坐标分别是,和.(1)已知点关于轴的对称点的坐标为,求,的值;(2)画出,且的面积为 ;(3)画出与关于轴成对称的图形,并写出各个顶点的坐标. -参考答案-一、单选题1、A【分析】画出旋转平移后的图形即可解决问题.【详解】解:旋转,平移后的图形如图所示,,故选:A【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.2、B【分析】根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断①,根据平移的性质即可求得的长,进而判断②,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断③,根据纵坐标的特点即可判断④⑤【详解】解:∵点A(,)沿着x的正方向向右平移()个单位后得到B点,∴B点的坐标为(,);故①正确;则线段AB的长为;故②不正确;∵A(,),B(,);纵坐标相等,即点A,B到x轴的距离相等∴线段AB所在的直线与x轴平行;故③正确若点M(,)在线段AB上;则,即,不存在实数故点M(,)不在线段AB上;故④不正确同理点N(,)在线段AB上;故⑤正确综上所述,正确的有①③⑤,共3个故选B【点睛】本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.3、B【分析】根据关于原点对称的点的坐标特证构造方程-b=3,a=−2,再解方程即可得到a、b的值,进而可算出答案.【详解】解:∵点(a,﹣3)关于原点的对称点是(2,﹣b),∴−b=3,a=−2,解得:b=-3,a=−2,则,故选择B.【点睛】本题主要考查了关于原点对称的点的坐标:掌握关于原点对称的特征,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).关键是利用对称性质构造方程.4、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案.【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称.故选A.【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系.掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键.5、D【分析】当AB⊥x轴时,AB距离最小,最小值即为点A纵坐标的绝对值,据此可得.【详解】解:∵A(﹣2,5),且点B是x轴上的一点,∵当AB⊥x轴时,AB距离最小,即B点(-2,0)∴A、B两点间的距离的最小值5.故选:D.【点睛】本题考查了直线外一点与直线上各点连接的所有线段中,垂线段最短;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.6、D【分析】根据位置的确定需要两个条件:方向和距离进行求解即可.【详解】解:A、陇海路以北只有方向,不能确定位置,故不符合题意;B、工人路以西只有方向,不能确定位置,故不符合题意;C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;故选D.【点睛】本题主要考查了确定位置,熟知确定位置的条件是解题的关键.7、D【分析】如图,作PE⊥x轴于E,P′F⊥x轴于F.利用全等三角形的性质解决问题即可.【详解】解:如图,作PE⊥x轴于E,P′F⊥x轴于F. ∵∠PEO=∠OFP′=∠POP′=90°,∴∠POE+∠P′OF=90°,∠P′OF+∠P′=90°,∴∠POE=∠P′,∵OP=OP′,∴△POE≌△OP′F(AAS),∴OF=PE=1,P′F=OE=2,∴P′(﹣1,-2).故选:D.【点睛】本题考查旋转变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.8、A【分析】根据y轴上点的横坐标为0列式计算即可得解.【详解】解:∵点A(a+9,2a+6)在y轴上,∴a+9=0,解得:a=-9,故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.9、D【分析】根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”即可求得.【详解】解:点A(2,3)关于原点对称的点的坐标是故选D【点睛】本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.10、D【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、【分析】绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是故答案为:【点睛】本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.2、 (4,0)或(﹣2,2)【分析】利用网格结构找出点B绕点D旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.【详解】解:如图,点B绕点D旋转90°到达点B′或B″,点B′的坐标为(4,0),B″(﹣2,2).故答案为:(4,0)或(﹣2,2).【点睛】本题主要考查了坐标与图形变化—旋转,解题的关键在于能够利用数形结合的思想进行求解.3、(2,-5)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).【详解】解:根据中心对称的性质,得点P(-2,5)关于原点对称点的点的坐标是(2,-5).故答案为:(2,-5).【点睛】本题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆,比较简单.4、3【分析】根据点的纵坐标的绝对值是点到轴的距离,可得答案.【详解】在平面直角坐标系中,点P(2,﹣3)到轴的距离为3.故答案为:3.【点睛】本题考查了点的坐标,点的纵坐标的绝对值是点到轴的距离,横坐标的绝对值是点到轴的距离.5、-4【分析】在轴上点的坐标,横坐标为,可知,进而得到的值.【详解】解:在轴上故答案为:.【点睛】本题考察了坐标轴上点坐标的特征.解题的关键在于理解轴上点坐标的形式.在轴上点的坐标,横坐标为;在轴上点的坐标,纵坐标为.三、解答题1、B(2,1),D(﹣2,﹣1).【分析】根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据AB=CD=3得出横坐标.【详解】解:∵AB∥CD∥x轴,A点坐标为(﹣1,1),点C(1,﹣1),∴点B、D的纵坐标分别是1,﹣1,∵AB=CD=3,∴点B、D的横坐标分别是-1+3=2,1-3=-2,∴B(2,1),D(﹣2,﹣1).【点睛】本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同.2、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求△A1B1C1面积.【详解】(1)∵∴△ABC关于原点O对称的△A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点.3、(1)见解析;A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);(2)P的坐标为(0,7)或(0,﹣3)【分析】(1)分别作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;(2)根据三角形的面积公式,进而可得出P点坐标.【详解】解:(1)如图所示:A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);(2)△ABC的面积=,∵BB'=2,∴P的坐标为(0,7)或(0,﹣3).【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.4、(1)或;(2)或;(3)或.【分析】(1)根据“点到轴的距离是1”可得,由此即可求出的值;(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;(3)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案.【详解】解:(1)点到轴的距离是1,且,,即或,解得或;(2)当时,点的坐标为,则点的坐标为,即,当时,点的坐标为,则点的坐标为,即,综上,点的坐标为或;(3)点位于第三象限,,解得,点的横、纵坐标都是整数,或,当时,,则点的坐标为,当时,,则点的坐标为,综上,点的坐标为或.【点睛】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键.5、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1).【分析】(1)根据对称中心的性质可得对应点连线的交点即为对称中心;(2)根据题意作出A,B,C绕原点O旋转180°得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标.【详解】(1)如图所示,点O即为要求作的对称中心.(2)如图所示,△A1B1C1即为要求作的三角形,由点A1的在平面直角坐标系中的位置可得,点A1的坐标为(-4,1).【点睛】此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质.6、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可.【详解】解:∵的顶点坐标分别为,绕点顺时针旋转,得到,∴点A1横坐标-1+[5-(-1)]=5,纵坐标-1+[-1-(-4)]=2,A1(5,2),∴点B1横坐标-1+[2-(-1)]=2,纵坐标-1+[-1-(-5)]=3,B1(2,3),∴点C1横坐标-1+[4-(-1)]=4,纵坐标-1+[-1-(-3)]=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1, B1C1,C1A1,则△A1B1C1为所求;,=,=,=2.【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键.7、(1);(2)见解析;(3)12【分析】(1)根据平面直角坐标系写出点的坐标即可;(2)找到点关于轴对称的对应点,顺次连接,则即为所求;(3)根据正方形的面积减去三个三角形的面积即可求得的面积【详解】(1)根据平面直角坐标系可得的坐标为,故答案为:(2)如图所示,找到点关于轴对称的对应点,顺次连接,则即为所求;(3)的面积为故答案为:【点睛】本题考查了坐标与图形,轴对称的性质与作图,掌握轴对称的性质是解题的关键.8、(1)见解析;(2);; ;(3)5【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)根据点的位置写出坐标即可;(3)把三角形的面积看成矩形面积减去周围三个三角形面积即可.【详解】解:(1)如图,△A1B1C1即为所求;(2)A1(3,4),B1(5,2),C1(2,0).故答案为:(3,4),(5,2),(2,0);(3)网格的单位长度为1,则=3×4-×2×3-×2×2-×1×4=5,故答案为:5.【点睛】本题考查轴对称,三角形的面积等知识,解题的关键是掌握轴对称的性质,学会利用分割法求三角形面积.9、(1)画图见解析,;(2)画图见解析,(-2,2)【分析】(1)根据关于y轴的点的坐标特征分别作出△ABC的各个顶点关于x轴的对称点,然后连线作图即可;(2)利用网格特点和旋转的性质画出点A2、B、C2的坐标,然后描点即可得到△A2BC2,然后写出点A2的坐标.【详解】解:(1)如图,即为所求;∵是A(2,4)关于x轴对称的点,∴根据关于x轴对称的点的坐标特征可知:;(2)如图,即为所求,∴的坐标为(-2,2).【点睛】本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键.10、(1),;(2)作图见详解;13;(3)作图见详解;,,.【分析】(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;(2)先确定A、B、C点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;(3)先确定A、B、C三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可.【详解】解:(1)∵点关于x轴的对称点P的坐标为,∴,;(2)如图:即为所求,,故答案为:13;(3)如图:A、B、C点关于y轴的对称点为:,,,顺次连接,∴即为所求,,.【点睛】此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题,共26页。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共25页。试卷主要包含了已知点A象限,如果点P,平面直角坐标系内一点P等内容,欢迎下载使用。
这是一份数学七年级下册第十五章 平面直角坐标系综合与测试当堂达标检测题,共28页。试卷主要包含了点P关于y轴对称点的坐标是.,平面直角坐标系中,将点A,如果点P,在平面直角坐标系中,点P等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)