开学活动
搜索
    上传资料 赚现金

    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含详解)

    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含详解)第1页
    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含详解)第2页
    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含详解)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十五章 平面直角坐标系综合与测试习题

    展开

    这是一份2021学年第十五章 平面直角坐标系综合与测试习题,共30页。试卷主要包含了点P关于y轴对称点的坐标是.,平面直角坐标系中,将点A,已知点P,在平面直角坐标系中,点等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是(    A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)2、平面直角坐标系内与点P关于原点对称的点的坐标是(     A. B. C. D.3、已知点Mm,﹣1)与点N(3,n)关于原点对称,则m+n的值为(  )A.3 B.2 C.﹣2 D.﹣34、点P(﹣1,2)关于y轴对称点的坐标是(  ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)5、在平面直角坐标系中,已知点P(5,−5),则点P在(    A.第一象限 B.第二象限 C.第三象限 D.第四象限6、在△ABC中,ABAC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是(    A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)7、平面直角坐标系中,将点A)沿着x的正方向向右平移()个单位后得到B点,则下列结论:①B点的坐标为();②线段AB的长为3个单位长度;③线段AB所在的直线与x轴平行;④点M)可能在线段AB上;⑤点N)一定在线段AB上.其中正确的结论有(    A.2个 B.3个 C.4个 D.5个8、已知点Pm+3,2m+4)在x轴上,那么点P的坐标为(  )A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)9、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是        A.( - 1, - 3) B.( - 1,3) C.(1, - 3) D.(3,1)10、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知点M坐标为,点Mx轴距离为______.2、如图,直角坐标平面xoy内,动点P按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),…按这样的运动规律,动点P第2022次运动到点的坐标是_____.3、在平面直角坐标系中,点P(2,﹣3)到x轴的距离为 ___.4、在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=________.5、已知在平面直角坐标系中,点在第一象限,且点轴的距离为2,到轴的距离为5,则的值为______.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,点为坐标原点,点,点轴的负半轴上,点,连接,且(1)求的度数;(2)点点出发沿射线以每秒2个单位长度的速度运动,同时,点点出发沿射线以每秒1个单位长度的速度运动,连接,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);(3)在(2)的条件下,当点轴的正半轴上,点轴的负半轴上时,连接,且四边形的面积为25,求的长.2、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点A的坐标为(1,-4).(1)△A1B1C1是△ABC关于y轴的对称图形,则点A的对称点A1的坐标是_______,并在图中画出△A1B1C1(2)将△ABC绕原点逆时针旋转90°得到△A2B2C2,则A点的对应点A2的坐标是______,并在图中画出△A2B2C2 3、已知A(-1,3),B(4,2),C(2,-1).(1)在平面直角坐标系中,画出△ABC及△ABC关于y轴的对称图形△A1B1C1(2)Px轴上一点,请在图中标出使△PAB的周长最小时的点P,并根据图象直接写出此时点P的坐标           4、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.5、如图所示,在平面直角坐标系中,的顶点坐标分别是(1)已知点关于轴的对称点的坐标为,求的值;(2)画出,且的面积为            (3)画出与关于轴成对称的图形,并写出各个顶点的坐标.6、如图所示的方格纸中,每个小方格的边长都是,点(1)作关于轴对称的(2)通过作图在轴上找出点,使最小,并直接写出点的坐标.7、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为CBx轴负半轴于点A,过点B作射线,作射线CDBM于点D,且(1)求证:点A为线段BC的中点.(2)求点D的坐标.8、如图,△ABC顶点的坐标分别为A(1,﹣1),B(4,﹣1),C(3,﹣4).将△ABC绕点A逆时针旋转90°后,得到△AB1C1.在所给的直角坐标系中画出旋转后的△AB1C1,并直接写出点B1C1的坐标:B1              );C1              ).9、如图,三个顶点的坐标分别是(1)请画出关于x轴对称的图形(2)求的面积;(3)在x轴上求一点P,使周长最小,请画出,并通过画图求出P点的坐标.10、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B顺时针旋转90°后的△A2BC2(3)求出(2)中△A2BC2的面积. -参考答案-一、单选题1、A【分析】根据点FN关于原点对称,即可求解.【详解】解:∵F点与N点关于原点对称,点F的坐标是(3,2),N点坐标为(﹣3,﹣2).故选:A【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.2、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3、C【分析】利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.【详解】解:与点关于原点对称,故选:C.【点睛】本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.4、A【分析】平面直角坐标系中任意一点Pxy),关于y轴的对称点的坐标是(-xy),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.5、D【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、A【分析】由题意可知BOCO,又ABAC,得点Ay轴上,即可求解.【详解】解:由题意可知BOCO∵又ABACAOBC∴点Ay轴上,∴选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A.【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.7、B【分析】根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断①,根据平移的性质即可求得的长,进而判断②,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断③,根据纵坐标的特点即可判断④⑤【详解】解:∵点A)沿着x的正方向向右平移()个单位后得到B点,B点的坐标为();故①正确;则线段AB的长为故②不正确;A),B);纵坐标相等,即点ABx轴的距离相等∴线段AB所在的直线与x轴平行;故③正确若点M)在线段AB上;,即,不存在实数故点M)不在线段AB上;故④不正确同理点N)在线段AB上;故⑤正确综上所述,正确的有①③⑤,共3个故选B【点睛】本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.8、B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】解:∵点Pm+3,2m+4)在x轴上,∴2m+4=0,解得:m=-2,m+3=-2+3=1,∴点P的坐标为(1,0).故选:B【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.9、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可.【详解】解:∵两个点关于原点对称时,它们的坐标符号相反,∴点关于原点对称的点的坐标是故选:A.【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律.10、C【分析】根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解.【详解】解:的坐标是,点与点关于轴对称,的坐标为故选:C.【点睛】本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键.二、填空题1、7【分析】根据点(xy)到x轴的距离等于|y|求解即可.【详解】解:点M x轴距离为|-7|=7,故答案为:7.【点睛】本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解答的关键.2、(2021,0)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2022除以4,再由商和余数的情况确定运动后点的坐标.【详解】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,∵2022÷4=505余2,∴第2022次运动为第505循环组的第2次运动,横坐标为,纵坐标为0,∴点P运动第2022次的坐标为(2021,0).故答案为:(2021,0).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.3、3【分析】根据点的纵坐标的绝对值是点到轴的距离,可得答案.【详解】在平面直角坐标系中,点P(2,﹣3)到轴的距离为3.故答案为:3.【点睛】本题考查了点的坐标,点的纵坐标的绝对值是点到轴的距离,横坐标的绝对值是点到轴的距离.4、-1【分析】直接利用关于原点对称点的性质得出ab的值,进而得出答案.【详解】解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,a=﹣4,b=-3,ab=-4+3=-1.故答案为:﹣1.【点睛】此题主要考查了关于原点对称点的性质,正确得出ab的值是解题关键.5、7【分析】由题意得,,即可得.【详解】解:由题意得,故答案为:7.【点睛】本题考查了点的坐标特征,解题的关键是理解题意.三、解答题1、(1);(2);(3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点,连接,根据四边形的面积求得,进而求得,由,设,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得【详解】(1)是等腰直角三角形,(2)①当点在轴正半轴时,如图,②当点在原点时,都在轴上,不能构成三角形,则时,不存在③当点在轴负半轴时,如图, 综上所述:(3)如图,过点,连接,则 是等腰直角三角形是等腰直角三角形中,【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.2、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1).【分析】(1)根据网格结构,找出点ABC关于y轴对称的点A1B1C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构,找出点ABC绕点逆时针旋转90°的对应点A2B2C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,△A2B2C2即为所求作的三角形,点A2(4,1).故答案为:(4,1).【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴.3、(1)见解析;(2)见解析,【分析】(1)根据关于y轴对称点的坐标特点得到△A1B1C1各顶点的坐标,然后描出各点,然后顺次连接即可;(2)作点A关于x轴的对称点A1,连接A1Bx轴与点P【详解】解:(1)如图△ABC及△A1B1C1即为所求作的图形;(2)如图点P即为所求作的点,此时点P的坐标(2,0) .【点睛】本题主要考查的是轴对称变换,掌握关于轴对称点的坐标特点是解题的关键.4、(1)见解析;(2)见解析;(3)(﹣4,﹣3)【分析】(1)分别作出A,B,C 的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)根据所画图形,直接写出坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点B2的坐标为(﹣4,﹣3).【点睛】本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.5、(1);(2)作图见详解;13;(3)作图见详解;【分析】(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;(2)先确定ABC点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;(3)先确定ABC三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可.【详解】解:(1)∵点关于x轴的对称点P的坐标为(2)如图:即为所求,故答案为:13;(3)如图:ABC点关于y轴的对称点为:,顺次连接,即为所求【点睛】此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键.6、(1)见解析;(2)见解析,点P的坐标为(−3,0)       【分析】(1)先分别作出点ABC关于y轴的对称点,然后再顺次连接可得;(2)作点A关于x轴的对称点A″,再连接A″Cx轴于点P,再确定点P的坐标即可.【详解】解:(1)如图所示:即为所求. (2)作点A关于x轴的对称点A′′,连结A′′C,交x轴于点P,点P即为所求,点P的坐标为(−3,0)    【点睛】本题主要考查作图﹣轴对称变换,熟练掌握轴对称变换的定义和性质及最短路径问题是解答本题的关键.7、(1)证明见解析,(2)(8,2).【分析】(1)过点CCQOAQ,证△CQA≌△BOA,即可证明点A为线段BC的中点;(2)过点CCROBR,过点DDSOBS,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.【详解】(1)证明:过点CCQOAQ∵点B的坐标是,点C的坐标为CQ=OB=4,∵∠CQO=∠BOA=90°,∠CAQ=∠BAO∴△CQA≌△BOACA=AB∴点A为线段BC的中点.(2)过点CCROBR,过点DDSOBS∴∠CRB=∠DSB=∠CBD=90°,∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,∴∠CBR=∠SDB∴∠BCD=∠BDC=45°,CB=DB∴△CRB≌△BSDCR=SBRB=DS∵点B的坐标是,点C的坐标为CR=SB=6,RB=DS=8,OS=SBOB=2,D的坐标为(8,2).【点睛】本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.8、画图见解析;B1(1,2);C1(4,1).【分析】图形绕点A逆时针旋转90°,将ABAC逆时针旋转90°,得到,连接, 利用网格特点和旋转的性质得出点B1C1的坐标,从而得到△AB1C1【详解】如图所示,△AB1C1为所作,B1点的坐标为(1,2),C1点的坐标为(4,1).故答案为(1,2),(4,1).【点睛】本题考察了绕某点画旋转图形以及求点坐标,首先找到旋转的点,根据旋转角度和网格特征,即可得到对应坐标点.9、(1)见解析;(2)3.5;(3)图形见解析,P点的坐标为【分析】(1)找到关于轴对称的点,顺次连接,则即为所求;(2)根据网格的特点,根据即可求得的面积;(3)连接,与轴交于点,根据对称性即可求得,点即为所求.【详解】解:(1)找到关于轴对称的点,顺次连接,则即为所求,如图(2)(3)根据作图可知,P点的坐标为【点睛】本题考查了画轴对称图形,坐标与图形,轴对称的性质求线段和的最小值,掌握轴对称的性质是解题的关键.10、(1)见解析,(﹣2,4);(2)见解析;(3)3.5【分析】(1)利用关于y轴对称的点的坐标特征写出ABC的对应点A1B1C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出AC的对应点A2C2即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△A2BC2的面积.【详解】解:(1)如图,△A1B1C1为所作,点A1的坐标为(﹣2,4);(2)如图,△A2BC2为所作;(3)△A2BC2的面积=3×3﹣×3×1﹣×2×1﹣×3×2=3.5.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试单元测试综合训练题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试单元测试综合训练题,共27页。试卷主要包含了点P的坐标为,在平面直角坐标系中,点A,平面直角坐标系中,将点A,若平面直角坐标系中的两点A等内容,欢迎下载使用。

    2021学年第十五章 平面直角坐标系综合与测试练习:

    这是一份2021学年第十五章 平面直角坐标系综合与测试练习,共35页。试卷主要包含了点关于轴对称的点的坐标是,下列各点,在第一象限的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共36页。试卷主要包含了如图,A,平面直角坐标系中,将点A,在平面直角坐标系中,点A等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map