


初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共25页。试卷主要包含了点在第四象限,则点在第几象限,一只跳蚤在第一象限及x轴等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )A.5 B.1 C. D.2、如果点P(m,n)是第三象限内的点,则点Q(-n,0)在( )A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上3、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)4、在平面直角坐标系中,点关于原点对称的点的坐标是( )A. B. C. D.5、点在第四象限,则点在第几象限( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、上海是世界知名金融中心,以下能准确表示上海市地理位置的是( )A.在中国的东南方 B.东经,北纬 C.在中国的长江出海口 D.东经.7、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.8、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1) →(1,0)→ … ],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )A.(4,0) B.(5,0) C.(0,5) D.(5,5)9、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )A. B. C. D.10、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )A.( - 1, - 3) B.( - 1,3) C.(1, - 3) D.(3,1)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点P(m﹣1,5)与点Q(﹣3,n)关于原点成中心对称,则m﹣n的值是___.2、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.3、若点M(,a)关于y轴的对称点是点N(b,),则=________.4、在平面直角坐标系内,点A(a,﹣3)与点B(1,b)关于原点对称,则a+b的值_________.5、若点(-1,m)与点(n,2)关于y轴对称,则的值为__________.三、解答题(10小题,每小题5分,共计50分)1、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.2、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′.(1)根据要求在网格中画出相应图形;(2)写出△A′B′C′三个顶点的坐标.3、在平面直角坐标系xOy中,点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称.(1)当t =-3时,点N的坐标为 ;(2)以MN为底边作等腰三角形MNP.①当t =1且直线MP经过原点O时,点P坐标为 ;②若MNP上所有点到x轴的距离都不小于a(a是正实数),则t的取值范围是 (用含a的代数式表示)4、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位后得到对应的;(2)再请你画出将沿x轴翻折后得到的;(3)若连接、,请你直接写出四边形的面积.5、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C;(2)△ABC的面积是 ;(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .6、如图,在平面直角坐标系中,A(1,4)、B(2,1)、C(﹣3,2).(1)作△ABC关于x轴对称图形△A'B'C';(2)求△CAA'的面积.7、在平面直角坐标系中,的顶点,,的坐标分别为,,.与关于轴对称,点,,的对应点分别为,,.请在图中作出,并写出点,,的坐标.8、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B顺时针旋转90°后的△A2BC2;(3)求出(2)中△A2BC2的面积.9、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.(1)请写出△ABC各点的坐标A B C ;(2)若把△ABC向上平移2个单位,再向右平移2个单位得,在图中画出,(3)求△ABC 的面积10、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标. -参考答案-一、单选题1、D【分析】点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算a,b计算即可.【详解】∵点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,∴a=-3,b=-2,∴-5,故选D.【点睛】本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键.2、A【分析】根据平面直角坐标系中象限的坐标特征可直接进行求解.【详解】解:∵点P(m,n)是第三象限内的点,∴n<0,∴-n>0,∴点Q(-n,0)在x轴正半轴上;故选A.【点睛】本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键.3、C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.4、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.5、C【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、B【分析】根据有序数对的性质解答.【详解】解:能准确表示上海市地理位置的是东经,北纬,故选:B.【点睛】此题考查了表示平面上点的位置的方法:有序数对,需用两个有序数量来表示某一位置,掌握有序数对的性质是解题的关键.7、C【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、C【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;故选:C.【点睛】本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.找出规律是解题的关键.9、C【分析】根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解.【详解】解:点的坐标是,点与点关于轴对称,的坐标为,故选:C.【点睛】本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键.10、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可.【详解】解:∵两个点关于原点对称时,它们的坐标符号相反,∴点关于原点对称的点的坐标是.故选:A.【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律.二、填空题1、9【分析】根据关于原点对称点的坐标特征求出、的值,再代入计算即可.【详解】解:点与点关于原点成中心对称,,,即,,,故答案为:9.【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数.2、或【分析】根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可.【详解】解:∵点,,且ABx轴,∴y=2,∵点到轴的距离是到轴距离的2倍,∴,∴,∴B(-4,2)或(4,2).故答案为(-4,2)或(4,2).【点睛】本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键.3、1【分析】直接利用关于y轴对称点的性质(横坐标互为相反数,纵坐标不变)得出a,b的值,进而求出答案.【详解】解:∵点M(,a)关于y轴的对称点是点N(b,),∴b=-,a=,则=1.故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,得出a,b的值是解题关键.4、2【分析】根据点关于原点对称的坐标特点即可完成.【详解】∵点A(a,﹣3)与点B(1,b)关于原点对称∴ ∴ 故答案为:2【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键.5、3【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后相加计算即可得解.【详解】解:∵点(-1,m)与点(n,2)关于y轴对称,∴,,∴;故答案为:3.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.三、解答题1、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.2、(1)见解析;(2),,【分析】(1)利用平移变换的性质分别作出,,的对应点,,即可.(2)根据平面直角坐标系写出,,的坐标.【详解】解:(1)如图,△即为所求,(2)根据平面直角坐标系可得:,,.【点睛】本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.3、(1)(2,-1);(2)①(-2,1);②t≥a+2或t≤-a-2【分析】(1)先求出对称轴,再表示N点坐标即可;(2)①以MN为底边作等腰三角形MNP,则点P在直线y=t=1上,直线OM与y=1的交点即为所求;②表示出M、N、P的坐标,比较纵坐标的绝对值即可.【详解】(1)过点(0,t)且垂直于y轴的直线解析式为y=t∵点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称∴可以设N点坐标为(2,n),且MN中点在y=t上∴,记得∴点N坐标为∴当t =-3时,点N的坐标为(2)①∵以MN为底边作等腰三角形MNP,且点M(2,t-2)与点N直线y=t对称.∴点P在直线y=t上,且P是直线OM与y=1的交点当t =1时M(2,-1),N(2,3)∴OM直线解析式为∴当y=1时,∴P点坐标为(-2,1)②由题意得,点M坐标为(2,t-2),点N坐标为,点P坐标为∵,MNP上所有点到x轴的距离都不小于a∴只需要或者当M、N、P都在x轴上方时,,此时,解得t≥a+2当MNP上与x轴有交点时,此时MNP上所有点到x轴的距离可以为0,不符合要求;当M、N、P都在x轴下方时,,此时,解得t≤-a-2综上t≥a+2或t≤-a-2【点睛】本题考查坐标与轴对称、等腰三角形的性质等知识,解题的关键是利用轴对称表示坐标,属于中考常考题型.4、(1)见解析;(2)见解析;(3)16【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积==16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.5、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).【分析】(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.(2)得出△ABC的底和高再由三角形面积公式计算即可.(3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).【详解】解:(1)如图所示,点A为(-4,0),∵点C与点A关于y轴对称∴点C坐标为(4,0)(2)由×底×高有(3)∵S△ACD=S△ABC,AC=AC∴即D点的纵坐标为4或-4又∵D点在y轴上故D点坐标为(0,4)或(0,-4).【点睛】本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.6、(1)见解析;(2)16【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)直接根据三角形的面积公式求解即可.【详解】解:(1)如图所示,△A'B'C'即为所求.(2)△CAA'的面积为×8×4=16.【点睛】本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义和性质.7、作图见解析,点,点,点【分析】分别作出A,B,C的对应点,,即可.【详解】解: 如图所示.点,点,点.【点睛】本题考查了作图-轴对称变换,直角坐标系中表示点的坐标,熟知关于y轴对称的点的坐标特点是解答此题的关键.8、(1)见解析,(﹣2,4);(2)见解析;(3)3.5【分析】(1)利用关于y轴对称的点的坐标特征写出A、B、C的对应点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、C的对应点A2和C2即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△A2BC2的面积.【详解】解:(1)如图,△A1B1C1为所作,点A1的坐标为(﹣2,4);(2)如图,△A2BC2为所作;(3)△A2BC2的面积=3×3﹣×3×1﹣×2×1﹣×3×2=3.5.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.9、(1);(2)见解析;(3)7【分析】(1)根据平面直角坐标系直接写出点的坐标即可;(2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)根据长方形减去三个三角形的面积即可求得△ABC 的面积【详解】(1)根据平面直角坐标系可得故答案为:(2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求(3)的面积等于【点睛】本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键.10、(1)见解析;(2)见解析;(3)(﹣4,﹣3)【分析】(1)分别作出A,B,C 的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)根据所画图形,直接写出坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点B2的坐标为(﹣4,﹣3).【点睛】本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
相关试卷
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题,共28页。试卷主要包含了在平面直角坐标系中,点P,点P关于y轴对称点的坐标是.,已知A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题,共31页。试卷主要包含了已知点A,下列各点,在第一象限的是,平面直角坐标系中,将点A,在平面直角坐标系中,点A等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了下列各点,在第一象限的是,已知A,平面直角坐标系内一点P,在平面直角坐标系中,点A等内容,欢迎下载使用。
