


沪教版 (五四制)第十五章 平面直角坐标系综合与测试复习练习题
展开
这是一份沪教版 (五四制)第十五章 平面直角坐标系综合与测试复习练习题,共28页。试卷主要包含了已知A,如果点P等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.2、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A.原点中心对称 B.轴轴对称 C.轴轴对称 D.以上都不对3、在平面直角坐标系中,点的坐标为,将点向左平移个单位长度,再向上平移个单位长度得到点,则点的坐标为( )A. B. C. D.4、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )A. B. C. D.5、上海是世界知名金融中心,以下能准确表示上海市地理位置的是( )A.在中国的东南方 B.东经,北纬 C.在中国的长江出海口 D.东经.6、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是( )A.﹣1 B.0 C.1 D.28、如图,在平面直角坐标系中,已知“蝴蝶”上有两点,,将该“蝴蝶”经过平移后点的对应点为,则点的对应点的坐标为( )A. B. C. D.9、如果点P(m,n)是第三象限内的点,则点Q(-n,0)在( )A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上10、如图,每个小正方形的边长为1,在阴影区域的点是( ) A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点与,关于y轴对称,则的值为____________.2、在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点的坐标是,则经过第2021次变换后所得的点的坐标是___________.3、点A(3,4)到x轴的距离是 _____.4、已知点与点关于原点对称,则a-b的值为________.5、已知点A(a,﹣3)是点B(﹣2,b)关于原点O的对称点,则a+b=_____.三、解答题(10小题,每小题5分,共计50分)1、已知:如图,在平面直角坐标系中.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );(2)直接写出△ABC的面积为 ;(3)在x轴上画点P,使PA+PC最小.2、已知点,解答下列各题.(1)点P在x轴上,求出点P的坐标;(2)点Q的坐标为=,直线轴;求出点P的坐标;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求的值.3、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.4、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后D的对应点D1的坐标;(3)请计算出的面积.5、如图(1)敌方战舰C和我方战舰2号在我方潜艇什么方向?(2)如何确定敌方战舰B的位置?6、如图,在平面直角坐标系中,已知线段AB;(1)请在y轴上找到点C,使△ABC的周长最小,画出△ABC,并写出点C的坐标;(2)作出△ABC关于y轴对称的△A'B'C';(3)连接BB',AA'.求四边形AA'B'B的面积.7、已知A(-1,3),B(4,2),C(2,-1).(1)在平面直角坐标系中,画出△ABC及△ABC关于y轴的对称图形△A1B1C1;(2)P为x轴上一点,请在图中标出使△PAB的周长最小时的点P,并根据图象直接写出此时点P的坐标 .8、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2的坐标.9、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.(1)求证:△AOB≌△COD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.10、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上.(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(﹣3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标. -参考答案-一、单选题1、C【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案.【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称.故选A.【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系.掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键.3、A【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:∵点A的坐标为(2,1),将点A向左平移3个单位长度,再向上平移1个单位长度得到点A′,∴点A′的横坐标是2-3=-1,纵坐标为1+1=2,即(-1,2).故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.4、C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.5、B【分析】根据有序数对的性质解答.【详解】解:能准确表示上海市地理位置的是东经,北纬,故选:B.【点睛】此题考查了表示平面上点的位置的方法:有序数对,需用两个有序数量来表示某一位置,掌握有序数对的性质是解题的关键.6、C【分析】根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.【详解】∵点A的坐标为(1,3),点是点A关于x轴的对称点,∴点的坐标为(1,-3).∵点是将点向左平移2个单位长度得到的点,∴点的坐标为(-1,-3),∴点所在的象限是第三象限.故选C.【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.7、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.【详解】∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),∴平移方法为向右平移2个单位,∴x=﹣2,y=3,∴x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.8、D【分析】先根据与点对应,求出平移规律,再利用平移特征求出点B′坐标即可【详解】解:∵与点对应,∴平移1-3=-2,3-7=-4,先向下平移4个单位,再向左平移2个单位,∵点B(7,7),∴点B′(7-2,7-4)即.如图所示 故选:D.【点睛】本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键.9、A【分析】根据平面直角坐标系中象限的坐标特征可直接进行求解.【详解】解:∵点P(m,n)是第三象限内的点,∴n<0,∴-n>0,∴点Q(-n,0)在x轴正半轴上;故选A.【点睛】本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键.10、C【分析】根据平面直角坐标系中点的坐标的表示方法求解即可.【详解】解:图中阴影区域是在第二象限,A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.故选:C.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.二、填空题1、5【分析】关于轴对称的两个点的横坐标互为相反数,纵坐标不变,根据原理直接求解的值,再代入进行计算即可.【详解】解: 点与,关于y轴对称, 故答案为:5【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.2、【分析】由题意根据点A第四次关于y轴对称后在第一象限,即点A回到初始位置,所以,每四次对称为一个循环组依次循环进行分析即可得出答案.【详解】解:根据题意可知:点A第四次关于y轴对称后在第一象限,即点A回到初始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505…1,∴经过第2021次变换后所得的A点与第一次关于x轴对称变换的位置相同,在第四象限,坐标为.故答案为:.【点睛】本题考查轴对称的性质以及点的坐标变换规律,读懂题目信息,观察出每四次对称为一个循环组依次循环是解题的关键.3、4【分析】根据点到x轴的距离等于纵坐标的绝对值解答即可.【详解】解:点A(3,4)到x轴的距离为4,故答案为:4.【点睛】本题考查了点到坐标轴的距离,掌握点到x轴的距离等于纵坐标的绝对值是解题的关键.4、5【分析】直接利用关于原点对称点的性质得出a,b的值,代入求解即可.【详解】解:∵点A(a,1)与点B(﹣4,b)关于原点对称,∴,,∴,故答案为:5.【点睛】本题考查了关于原点对称点的性质及求代数式的值,正确得出a,b的值是解题的关键.5、5【分析】根据关于原点对称的点的特点可得a,b的值,相加即可.【详解】解:∵点A(a,﹣3)是点B(﹣2,b)关于原点O的对称点,∴a=2,b=3,∴a+b=5.故答案为5.【点睛】本题考查了关于原点对称的点的特点,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.三、解答题1、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;(3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.【详解】解:(1)如图所示:△A1B1C1即为所求,A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;故答案为:5;(3)如图所示:点P即为所求.【点睛】本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.2、(1);(2);(3)【分析】(1)利用x轴上P点的纵坐标为0求解即可得;(2)利用平行于y轴的直线上的点的横坐标相等列方程求解即可;(3)在第二象限,且到x轴、y轴的距离相等的点的横纵坐标互为相反数,再利用相反数的性质列方程求解可得,将其代入代数式求解即可.(1)解:∵点P在x轴上,∴P点的纵坐标为0,∴,解得:,∴,∴.(2)解:∵直线轴,∴,解得:,∴,∴.(3)解:∵点P在第二象限,且它到x轴、y轴的距离相等,∴.解得:.∴,∴的值为2020.【点睛】本题主要考查平面直角坐标系内点的坐标特点.分别考查了坐标轴上点的坐标特点、平行于坐标轴的直线上点坐标的特点、到坐标轴距离相等的点的坐标特点,理解题意,熟练掌握坐标系中不同条件下的坐标特点是解题关键.3、(1)6,30°;(2)见解析,30【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.【详解】(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.答案:6,30°(2)如图所示:∵A(5,30),B(12,120),∴∠BOX=120°,∠AOX=30°,∴∠AOB=90°,∵OA=5,OB=12,∴△AOB的面积为OA·OB=30.【点睛】本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.4、(1)见解析;(2)(-a,b);(3)2【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可得;(2)根据(1)中规律即可得出答案;(3)用割补法可求△ABC的面积.【详解】解:(1)△A1B1C1如图所示:(2)∵D点的坐标为(a,b),∴D1点的坐标为(-a,b);(3).【点睛】本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会有分割法求三角形面积.关于y轴对称点的性质:纵坐标相同,横坐标互为相反数.5、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据.【分析】(1)根据图中的位置与方向即可确定.(2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少.【详解】(1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方.(2)仅知道在我方潜艇北偏东40°方向有小岛,而要确定敌方战舰B的位置,还需要敌方战舰B与我方潜艇的方向和距离两个数据.【点睛】本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角.6、(1)见详解,点C 的坐标为(0,4);(2)见详解;(3)16【分析】(1)作B点关于y轴的对称点 连接与y轴的交点即为C点,即可求出点C的坐标;(2)根据网格画出△ABC关于y轴对称的△A'B'C'即可;(3)根据梯形面积公式即可求四边形AA'B'B的面积.【详解】解:(1)所要求作△ABC 如图所示,点C的坐标为(0,4);(2)△A'B'C'即为所求;(3)点A,B,A',B'的坐标分别为:(﹣3,1)、(﹣1,5)、(3,1)、(1,5);∴四边形AA'B'B的面积为: = (2+6)×4=16.【点睛】本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称的性质.7、(1)见解析;(2)见解析,【分析】(1)根据关于y轴对称点的坐标特点得到△A1B1C1各顶点的坐标,然后描出各点,然后顺次连接即可;(2)作点A关于x轴的对称点A1,连接A1B交x轴与点P.【详解】解:(1)如图△ABC及△A1B1C1即为所求作的图形;(2)如图点P即为所求作的点,此时点P的坐标(2,0) .【点睛】本题主要考查的是轴对称变换,掌握关于轴对称点的坐标特点是解题的关键.8、(1)画图见解析,;(2)画图见解析,(-2,2)【分析】(1)根据关于y轴的点的坐标特征分别作出△ABC的各个顶点关于x轴的对称点,然后连线作图即可;(2)利用网格特点和旋转的性质画出点A2、B、C2的坐标,然后描点即可得到△A2BC2,然后写出点A2的坐标.【详解】解:(1)如图,即为所求;∵是A(2,4)关于x轴对称的点,∴根据关于x轴对称的点的坐标特征可知:;(2)如图,即为所求,∴的坐标为(-2,2).【点睛】本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键.9、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.【详解】(1)轴于点,轴于点,,,,,,;(2)如图2,过点作轴,交于点,,,轴,,,,,,,, 在与中,,,,即点为中点;(3)如图3,延长到,使,连接,,延长交于点,,,,,,,,,,,,,,,,,,,,,,即.【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.10、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【分析】(1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,△PQM即为所求;∵P是D(-3,0)横坐标减2,纵坐标加3得到的,∴点P的坐标为(-5,3).【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时作业,共28页。试卷主要包含了平面直角坐标系中,点P,已知点在一,若平面直角坐标系中的两点A,点P关于原点对称的点的坐标是,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后复习题,共27页。试卷主要包含了在平面直角坐标系中,点P,平面直角坐标系中,将点A等内容,欢迎下载使用。
这是一份2020-2021学年第十五章 平面直角坐标系综合与测试同步训练题,共29页。试卷主要包含了在平面直角坐标系中,点P,根据下列表述,能确定位置的是,点M,如果点P,若平面直角坐标系中的两点A等内容,欢迎下载使用。
