![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系课时练习试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12712532/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系课时练习试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12712532/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系课时练习试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12712532/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试课堂检测
展开
这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试课堂检测,共27页。试卷主要包含了点P的坐标为,在平面直角坐标系中,点P,已知点A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )A.( - 1, - 3) B.( - 1,3) C.(1, - 3) D.(3,1)2、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )A.5 B.1 C. D.3、点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、点P的坐标为(﹣3,2),则点P位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为( )A.(2,﹣5) B.(﹣2,﹣5) C.(﹣2,5) D.(﹣5,2)6、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)7、在平面直角坐标系中,点的坐标为,将点向左平移个单位长度,再向上平移个单位长度得到点,则点的坐标为( )A. B. C. D.8、已知点A(a+9,2a+6)在y轴上,a的值为( )A.﹣9 B.9 C.3 D.﹣39、若点在第一象限,则a的取值范围是( )A. B. C. D.无解10、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1) →(1,0)→ … ],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )A.(4,0) B.(5,0) C.(0,5) D.(5,5)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为________.2、在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则a-b=________.3、在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是________.4、在平面直角坐标系中,点关于原点的对称点坐标为_______.5、已知点A(a,1)与点B(3,b)关于x轴对称,则a+b=_______.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 .2、如图,在平面直角坐标系xOy中,A(1,﹣2).(1)作△ABC关于y轴的对称图形△A′B′C′;(2)写出B′和C′的坐标;(3)求△ABC的面积.3、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.4、格点三角形(顶点是网格线的交点的三角形)△ABC在平面直角坐标系中的位置如图所示.(1)A点坐标为 ;A点关于y轴对称的对称点A1坐标为 .(2)请作出△ABC关于y轴对称的△A1B1C1; (3)请直接写出△A1B1C1的面积.5、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为、、.(1)画出将关于点对称的图形;(2)写出点、、的坐标.6、在如图所示的平面直角坐标系中,A点坐标为.(1)画出关于y轴对称的;(2)求的面积.7、在平面直角坐标系中,的顶点坐标是、、.(1)画出绕点B逆时针旋转的;(2)画出关于点O的中心对称图形;(3)可由绕点M旋转得,请写出点M的坐标:________.8、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),△ABC关于y轴的对称图形为△A1B1C1 (1)请画出△ABC关于y轴对称图形△A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )(2)在y轴上取点D,使得△ABD为等腰三角形,这样的点D共有 个9、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由.10、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,5),B(1,1),C(3,2)(1)画出△ABC关于轴对称的△A1B1C1的图形及各顶点的坐标;(2)画出△ABC关于轴对称的△A2B2C2的图形及各顶点的坐标; (3)求出△ABC的面积. -参考答案-一、单选题1、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可.【详解】解:∵两个点关于原点对称时,它们的坐标符号相反,∴点关于原点对称的点的坐标是.故选:A.【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律.2、D【分析】点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算a,b计算即可.【详解】∵点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,∴a=-3,b=-2,∴-5,故选D.【点睛】本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键.3、C【分析】根据各象限内点的坐标特征解答.【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4、B【分析】根据平面直角坐标系中四个象限中点的坐标特点求解即可.【详解】解:∵点P的坐标为(﹣3,2),∴则点P位于第二象限.故选:B.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.5、C【分析】关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.【详解】解:点P(2,5)关于y轴对称的点的坐标为: 故选:C【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.6、A【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.7、A【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:∵点A的坐标为(2,1),将点A向左平移3个单位长度,再向上平移1个单位长度得到点A′,∴点A′的横坐标是2-3=-1,纵坐标为1+1=2,即(-1,2).故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.8、A【分析】根据y轴上点的横坐标为0列式计算即可得解.【详解】解:∵点A(a+9,2a+6)在y轴上,∴a+9=0,解得:a=-9,故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.9、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解: 点在第一象限, 由①得: 由②得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.10、C【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;故选:C.【点睛】本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.找出规律是解题的关键.二、填空题1、【分析】连接AD、BD,由勾股定理可得BD,求出∠OFA=30°,得到OA的值,进而求得OB的值,得到点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标.【详解】解:如图,连接AD,BD,在正六边形ABCDEF中,,∴,在中,,∴,∴,∴,∴,∵将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,∴6次一个循环,∵,∴经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,故答案为:.【点睛】此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律.2、-1【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=-3,则a-b=-4+3=-1.故答案为:﹣1.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.3、(-2,4)【分析】根据点(x,y)关于y轴对称的点的坐标为(-x, y)进行解答即可.【详解】解:点A(2,4)关于y轴对称的点B的坐标是(-2,4),故答案为:(-2,4).【点睛】本题考查关于y轴对称的点的坐标,熟知关于y轴对称的点的坐标变换规律是解答的关键.4、(-4,7)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),进而得出答案.【详解】解:点关于原点的对称点坐标为(-4,7),故答案是:(-4,7).【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.5、2【分析】根据两点关于x轴对称得到a=3,b=-1,代入计算即可.【详解】解:∵点A(a,1)与点B(3,b)关于x轴对称,∴a=3,b=-1,∴a+b=2.故答案为:2.【点睛】此题考查了轴对称的性质—关于x轴对称:关于x轴对称的两点的横坐标相等,纵坐标互为相反数,熟记性质是解题关键.三、解答题1、(1)见解析;(2)见解析;(3)(a-5,-b)【分析】(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出△ABC.(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论.【详解】解:(1)如图,ABC即为所画.(2)如图,A1B1C1即为所画.(3)点P(a,b)向左平移5个单位后的坐标为(a-5,b),关于x轴对称手点的坐标为(a-5,-b). 故答案为:(a-5,-b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置.2、(1)见解析;(2)B′(﹣5,6),C′(-7,2);(3)16【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A′,B′,C′即可;(2)根据点的位置写出坐标即可;(3)把三角形面积看成长方形面积减去周围三个三角形面积即可.【详解】解:(1)如图,△A′B′C′即为所求;(2)B′(﹣5,6),C′(-7,2);(3)S△ABC=8×6﹣×8×4﹣×2×4﹣×6×4=16.【点睛】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.3、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.4、(1)(-2,3);(2,3);(2)见解析;(3)【分析】(1)根据平面直角坐标系可得A点坐标,再根据关于y轴对称的点的坐标特点可得A1坐标;(2)首先确定A、B、C三点坐标,再连接即可;(3)根据割补求解可得答案.【详解】解:(1)A点坐标为 (-2,3);A点关于y轴对称的对称点A1坐标为 (2,3).故答案为:(-2,3);(2,3);(2)如图所示△A1B1C1;(3)△A1B1C1的面积:2×2-×1×2-×1×2-×1×1=.【点睛】本题主要考查了作图-轴对称变换,关键是掌握图形都是由点组成的,作轴对称图形,就是寻找特殊点的对称点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.5、(1)见解析;(2),,.【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2),,.【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.6、(1)见解析;(2).【分析】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;(2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.【详解】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;(2)S△ABC=3×3=.【点睛】本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.7、(1)画图见解析;(2)画图见解析;(3)【分析】(1)分别确定绕逆时针旋转后的对应点再顺次连接从而可得答案;(2)分别确定关于原点对称的对称点再顺次连接从而可得答案;(3)如图,由;是旋转对应点,则到旋转中心的距离相等,到旋转中心的距离相等,可得线段的垂直平分线的交点即为旋转中心,再根据在坐标系内的位置写出其坐标即可.【详解】解:(1)如图,是所求作的三角形,(2)如图,是所求作的三角形;(3)如图,;是旋转对应点, 到旋转中心的距离相等,到旋转中心的距离相等,则线段的垂直平分线的交点即为旋转中心,其坐标为:【点睛】本题考查的是旋转作图,中心对称的作图,确定旋转中心,掌握旋转的性质是解本题的关键.8、(1)见解析;-1,4 ;-3,1;-3,5;(2)5【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)分AB为腰和AB为底分别求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.A1(-1,4) ;B1(-3,1);C1(-3,5);故答案为:-1,4 ;-3,1;-3,5;(2)以点A为顶点、AB为腰的等腰三角形ABD,且点D在y轴上的有2个;以点B为顶点,BA为腰的等腰△ABD,且点D在y轴上的有2个;以AB为底边的等腰三角形,且点D在y轴上的点只有1个;所以这样的点D共有5个,故答案为:5.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点.9、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)根据轴对称的定义判断即可.【详解】解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,△A2B2C2即为所求,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10、(1)图见解析, A1(2,-5)B1(1,-1),C1(3,-2) ; (2)图见解析,A2(-2,5),B2(-1,1),C2(-3,2);(3)3.5【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得,然后写出坐标;(2)分别作出点A、B、C关于y轴的对称点,再顺次连接可得,然后写出坐标;(3)利用割补法求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求,A1(2,-5),B1(1,-1),C1(3,-2) ;(2)如图所示,△A2B2C2即为所求,A2(-2,5),B2(-1,1),C2(-3,2);(3)△ABC的面积==3.5.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.
相关试卷
这是一份数学沪教版 (五四制)第十五章 平面直角坐标系综合与测试复习练习题,共30页。试卷主要包含了已知点A象限,已知点A,在平面直角坐标系中,点在,如图,A等内容,欢迎下载使用。
这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试练习,共30页。试卷主要包含了若点P,点关于轴对称的点的坐标是,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份数学七年级下册第十五章 平面直角坐标系综合与测试单元测试复习练习题,共30页。试卷主要包含了点在第四象限,则点在第几象限,点关于轴对称的点的坐标是,在下列说法中,能确定位置的是,已知点M,点P关于y轴对称点的坐标是.等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)