开学活动
搜索
    上传资料 赚现金

    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系难点解析试卷(含答案详解)

    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系难点解析试卷(含答案详解)第1页
    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系难点解析试卷(含答案详解)第2页
    2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系难点解析试卷(含答案详解)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共28页。试卷主要包含了若点P,点A的坐标为,则点A在,已知点A等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是(  )A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)2、在平面直角坐标系中,点关于x轴对称的点的坐标是(    A. B. C. D.3、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是(    A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)4、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点的中点,点上运动,当时,点的坐标是(    )A. B. C. D.5、若点Pm,1)在第二象限内,则点Q(1﹣m,﹣1)在(  )A.第四象限 B.第三象限 C.第二象限 D.第一象限6、平面直角坐标系中,下列在第二象限的点是(    A. B. C. D.7、点A的坐标为,则点A在(    A.第一象限 B.第二象限 C.第三象限 D.第四象限8、如图,的顶点坐标为,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是(    ).A. B. C. D.9、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为(    A.2 B.﹣2 C.3 D.﹣310、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是(    A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知点关于原点对称,则xy的值是______.2、在平面直角坐标系中,点P(﹣2,﹣5)关于原点对称的点的坐标是  ___________________.3、已知在平面直角坐标系中,点在第一象限,且点轴的距离为2,到轴的距离为5,则的值为______.4、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点BOCA为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.5、已知点,若PQ//x轴,且线段,则_____,____.三、解答题(10小题,每小题5分,共计50分)1、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△ABC′,点ABC的对应点分别为A′、B′、C′.(1)根据要求在网格中画出相应图形;(2)写出△ABC′三个顶点的坐标.2、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0, -1),   (1)写出AB两点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1       (3)画出△ABC绕点C旋转180°后得到的△A2B2C23、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;(3)A1B1C1A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由.4、如图,在平面直角坐标系中,的三个顶点均在格点上.(1)在网格中作出关于轴对称的图形(2)直接写出以下各点的坐标:________,________,________;(3)网格的单位长度为1.则________.5、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标:      (2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C26、如图,方格图中每个小正方形的边长为1,点ABC都是格点.(1)画出△ABC关于直线MN对称的(2)若B为坐标原点,请写出的坐标,并直接写出的长度..(3)如图2,AC是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)7、在如图所示的正方形网格中建立平面直角坐标系,的顶点坐标分别为,请按要求解答下列问题:(1)画出关于x轴对称的,并写出点A的对应点的坐标为(              );(2)平行于y轴的直线l经过,画出关于直线l对称的图形,并直接写出              ),              ),              );(3)仅用无刻度直尺作出的角平分线BD,保留画图痕迹(不写画法).8、如图,在平面直角坐标系xOy中,A(1,﹣2).(1)作△ABC关于y轴的对称图形△ABC′;(2)写出B′和C′的坐标;(3)求△ABC的面积.9、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点AC的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△ABC′.(3)求△ABC的面积        10、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4).(1)画出△ABC关于x轴对称的△A1B1C1ABC的对应点分别为A1B1C1(2)画出△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2ABC的对应点分别为A2B2C2.连接B2C2,并直接写出线段B2C2的长度. -参考答案-一、单选题1、B【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.【详解】解:由点关于轴的对称点坐标是,可知A,则点关于轴的对称点坐标是故选B.【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.2、C【分析】根据若两点关于 轴对称,横坐标不变,纵坐标互为相反数,即可求解【详解】解:点关于x轴对称的点的坐标是 故选:C【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,横坐标不变,纵坐标互为相反数;若两点关于y轴对称,横坐标互为相反数,纵坐标不变是解题的关键.3、A【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.4、A【分析】由点的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标【详解】解:过点PPMOD于点M∵长方形的顶点的坐标分别为,点的中点,∴点D(5,0)PMODOMDM即点M(2.5,0)∴点P(2.5,4),故选:A【点睛】此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.5、A【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点Pm,1)在第二象限内,m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、C【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、A【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:由题意,∵点A的坐标为∴点A在第一象限;故选:A【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、A【分析】画出旋转平移后的图形即可解决问题.【详解】解:旋转,平移后的图形如图所示,故选:A【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.9、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.【详解】解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,a=3,故选:C.【点睛】此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.10、B【分析】内任一点Aab)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-ab),则﹣a>0,b<0,然后判定象限即可.【详解】解:∵设内任一点Aab)在第三象限内,a<0,b<0,∵点A关于x轴对称后的点B(a,-b),∴﹣b>0,∴点Ba,-b)所在的象限是第二象限,即在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.二、填空题1、【分析】直接利用关于原点对称点的性质得出xy的值进而得出答案.【详解】解:∵点关于原点对称, 解得:则xy的值是:-3.故答案为:-3.【点睛】此题主要考查了关于原点对称点的性质,正确得出的值是解题关键.2、(2,5)【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数即可求解.【详解】解:点P(﹣2,﹣5)关于原点对称的点的坐标是(2,5)故答案为:(2,5)【点睛】本题考查了关于原点对称的两个点的坐标特征,掌握“关于原点对称的点的横坐标、纵坐标分别互为相反数”是解题的关键.3、7【分析】由题意得,,即可得.【详解】解:由题意得,故答案为:7.【点睛】本题考查了点的坐标特征,解题的关键是理解题意.4、(2021,0)【分析】将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.【详解】A点坐标为(1,1),且A1A点绕B点顺时针旋转90°所得A1点坐标为(2,0)又∵A2A1点绕O点顺时针旋转90°所得A2点坐标为(0,-2)又∵A3A2点绕C点顺时针旋转90°所得A3点坐标为(-3,1)又∵A4A3点绕A点顺时针旋转90°所得A4点坐标为(1,5)由此可得出规律:An为绕BOCA四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.∵2021÷4=505…1A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得A2021点坐标为(2021,0).故答案为:(2021,0).【点睛】本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.5、或4    2    【分析】根据轴可知纵坐标相等得出的值,再由,分点的左右两侧相距3个单位得出的值.【详解】,且轴,故答案为:4或,2.【点睛】平面直角坐标系中点的坐标,掌握轴可知纵坐标相等是解题的关键.三、解答题1、(1)见解析;(2)【分析】(1)利用平移变换的性质分别作出的对应点即可.(2)根据平面直角坐标系写出的坐标.【详解】解:(1)如图,△即为所求,(2)根据平面直角坐标系可得:【点睛】本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.2、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析【分析】(1)根据 AB 的位置写出坐标即可;(2)分别求出 ABC 的对应点 A1B1C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1 B1C1C1A1即可;(3)分别求出 ABC 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2 B2C2C2A2即可.【详解】(1)由题意 A(-1,2),B(-3,1).(2)△ABC关于y轴对称的△A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,A(-1,2),B(-3,1).C(0,-1),A1(1,2),B1(3,1),C1(0,-1),在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1 B1C1C1A1如图△A1B1C1即为所求.(3)△ABC绕点C旋转180°后得到的△A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,A(-1,2),B(-3,1).C(0,-1),A2B2C2的横坐标分别为1,3,0,纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,A2(1,-4)、B2(3,-3)、C2(0,-1),在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2 B2C2C2A2如图△A2B2C2即为所求.【点睛】本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.3、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.【分析】(1)分别作出ABC的对应点A1B1C1即可;(2)分别作出ABC的对应点A2B2C2即可;(3)根据轴对称的定义判断即可.【详解】解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,△A2B2C2即为所求,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4、(1)见解析;(2);(3)5【分析】(1)利用轴对称的性质分别作出ABC的对应点A1B1C1即可;(2)根据点的位置写出坐标即可;(3)把三角形的面积看成矩形面积减去周围三个三角形面积即可.【详解】解:(1)如图,△A1B1C1即为所求;(2)A1(3,4),B1(5,2),C1(2,0).故答案为:(3,4),(5,2),(2,0);(3)网格的单位长度为1,则=3×4-×2×3-×2×2-×1×4=5,故答案为:5.【点睛】本题考查轴对称,三角形的面积等知识,解题的关键是掌握轴对称的性质,学会利用分割法求三角形面积.5、(1)(4,﹣1);(2)见解析;(3)见解析.【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】(1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A1B1C1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.6、(1)画图见解析;(2);(3)画图见解析【分析】(1)分别确定关于对称的对称点 再顺次连接从而可得答案;(2)根据在坐标系内的位置直接写其坐标与的长度即可;(3)先确定关于的对称点,再连接 从而可得答案.【详解】解:(1)如图1,是所求作的三角形,(2)如图1,为坐标原点,  (3)如图2,点即为所求作的点.【点睛】本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.7、(1)图见解析,;(2)图见解析,;(3)见解析【分析】(1)利用关于x轴对称的点的坐标特征得到的坐标,然后描点即可;(2)根据网格特点和对称的性质,分别作出ABC关于直线l的对称点,然后写出它们的坐标;(3)把ABA点逆时针旋转90°得到AE,连接BEACD【详解】解:(1)如图,为所作,(2)如图,为所作,(3)如图,BD为所作. 【点睛】本题考查了平面直角坐标系中点的坐标,画轴对称图形,解题的关键是正确写出点的坐标.8、(1)见解析;(2)B′(﹣5,6),C′(-7,2);(3)16【分析】(1)利用轴对称的性质分别作出ABC的对应点A′,B′,C′即可;(2)根据点的位置写出坐标即可;(3)把三角形面积看成长方形面积减去周围三个三角形面积即可.【详解】解:(1)如图,△ABC′即为所求;(2)B′(﹣5,6),C′(-7,2);(3)SABC=8×6﹣×8×4﹣×2×4﹣×6×4=16.【点睛】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.9、(1)见解析;(2)见解析;(3)4.【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△ABC′;(3)利用面积加减法计算.(1)如图所示:(2)解:如图所示:(3)解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,故答案为:4.【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.10、(1)作图见解析;(2)作图见解析,【分析】(1)关于轴对称,即对应点横坐标不变,纵坐标互为相反数,找出坐标即可;(2)根据旋转的性质可画出图形,即可找出的坐标,由即可得出答案.【详解】(1)关于轴对称的如图所作,,(2)绕原点逆时针方向旋转得到的如图所示,由旋转的性质得:【点睛】本题考查轴对称与旋转作图,掌握轴对称的性质以及旋转的性质是解题的关键. 

    相关试卷

    数学沪教版 (五四制)第十五章 平面直角坐标系综合与测试课时作业:

    这是一份数学沪教版 (五四制)第十五章 平面直角坐标系综合与测试课时作业,共31页。试卷主要包含了点P关于y轴对称点的坐标是.,如果点P等内容,欢迎下载使用。

    初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试练习:

    这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试练习,共28页。试卷主要包含了已知点A,已知A等内容,欢迎下载使用。

    数学七年级下册第十五章 平面直角坐标系综合与测试课后复习题:

    这是一份数学七年级下册第十五章 平面直角坐标系综合与测试课后复习题,共30页。试卷主要包含了点P关于原点对称的点的坐标是,已知点在一,已知点A,点P的坐标为等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map