高考数学(理数)一轮复习单元检测05《平面向量与复数》提升卷(学生版)
展开1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.
2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.
3.本次考试时间100分钟,满分130分.
4.请在密封线内作答,保持试卷清洁完整.
第Ⅰ卷(选择题 共60分)
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若复数z满足iz=3+4i,则|z|等于( )
A.1B.2C.eq \r(5)D.5
2.若z1=(1+i)2,z2=1-i,则eq \f(z1,z2)等于( )
A.1+iB.-1+iC.1-iD.-1-i
3.设平面向量m=(-1,2),n=(2,b),若m∥n,则|m+n|等于( )
A.eq \r(5)B.eq \r(10)C.eq \r(2)D.3eq \r(5)
4.如图所示,向量eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,eq \(OC,\s\up6(→))=c,点A,B,C在一条直线上,且eq \(AC,\s\up6(→))=-4eq \(CB,\s\up6(→)),则( )
A.c=eq \f(1,2)a+eq \f(3,2)bB.c=eq \f(3,2)a-eq \f(1,2)b
C.c=-a+2bD.c=-eq \f(1,3)a+eq \f(4,3)b
5.设向量a=(x,1),b=(1,-eq \r(3)),且a⊥b,则向量a-eq \r(3)b与b的夹角为( )
A.eq \f(π,6)B.eq \f(π,3)C.eq \f(2π,3)D.eq \f(5π,6)
6.已知等差数列{an}的前n项和为Sn,若eq \(OB,\s\up6(→))=a1eq \(OA,\s\up6(→))+a2019eq \(OC,\s\up6(→)),且A,B,C三点共线(O为该直线外一点),则S2019等于( )
A.2019B.2020C.eq \f(2019,2)D.1010
7.设a,b是非零向量,则“a·b=|a||b|”是“a∥b”的( )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件
8.如图,在△ABC中,AB=AC=3,cs∠BAC=eq \f(1,3),eq \(DC,\s\up6(→))=2eq \(BD,\s\up6(→)),则eq \(AD,\s\up6(→))·eq \(BC,\s\up6(→))的值为( )
A.2B.-2C.3D.-3
9.已知a=(2,csx),b=(sinx,-1),当x=θ时,函数f(x)=a·b取得最大值,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(2θ+\f(π,4)))等于( )
A.eq \f(7\r(2),10)B.eq \f(\r(2),10)C.-eq \f(\r(2),10)D.-eq \f(7\r(2),10)
10.如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,eq \(BE,\s\up6(→))·eq \(CE,\s\up6(→))=2,eq \(BF,\s\up6(→))·eq \(CF,\s\up6(→))=-1,则eq \(BA,\s\up6(→))·eq \(CA,\s\up6(→))等于( )
A.5B.6
C.7D.8
11.定义:|a×b|=|a||b|sinθ,其中θ为向量a与b的夹角,若|a|=2,|b|=5,a·b=-6,则|a×b|等于( )
A.6B.-8或8
C.-8D.8
12.在△ABC中,eq \(CM,\s\up6(→))=2eq \(MB,\s\up6(→)),过点M的直线分别交射线AB,AC于不同的两点P,Q,若eq \(AP,\s\up6(→))=meq \(AB,\s\up6(→)),eq \(AQ,\s\up6(→))=neq \(AC,\s\up6(→)),则mn+m的最小值为( )
A.6eq \r(3) B.2eq \r(3) C.6 D.2
第Ⅱ卷(非选择题 共70分)
二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.若复数(a+i)2在复平面内对应的点在y轴负半轴上,则实数a的值是________.
14.已知若对任意一个单位向量e,满足(a+b)·e≤2成立,则a·b的最大值是______.
15.欧拉在1748年给出了著名公式eiθ=csθ+isinθ(欧拉公式)是数学中最卓越的公式之一,其中,底数e=2.71828…,根据欧拉公式eiθ=csθ+isinθ,任何一个复数z=r(csθ+isinθ),都可以表示成z=reiθ的形式,我们把这种形式叫做复数的指数形式,若复数z1=,z2=,则复数z=eq \f(z1,z2)在复平面内对应的点在第________象限.
16.已知点O为△ABC内一点,且满足eq \(OA,\s\up6(→))+eq \(OB,\s\up6(→))+4eq \(OC,\s\up6(→))=0.设△OBC与△ABC的面积分别为S1,S2,则eq \f(S1,S2)=______.
三、解答题(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)
17.在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1).
(1)求以线段AB,AC为邻边的平行四边形的两条对角线的长;
(2)在平面内一点D满足eq \(OD,\s\up6(→))=eq \(AB,\s\up6(→))-teq \(OC,\s\up6(→)),若△ACD为直角三角形,且A为直角,试求实数t的值.
18.已知a=(3,-2),b=(2,1),O为坐标原点.
(1)若ma+b与a-2b的夹角为钝角,求实数m的取值范围;
(2)设eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,求△OAB的面积.
19.如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足eq \(AP,\s\up6(→))=λeq \(PB,\s\up6(→)).
(1)若λ=eq \f(1,2),用向量eq \(OA,\s\up6(→)),eq \(OB,\s\up6(→))表示eq \(OP,\s\up6(→));
(2)若|eq \(OA,\s\up6(→))|=4,|eq \(OB,\s\up6(→))|=3,且∠AOB=60°,求eq \(OP,\s\up6(→))·eq \(AB,\s\up6(→))取值范围.
20.已知向量m=eq \b\lc\(\rc\)(\a\vs4\al\c1(\r(3)sin \f(x,4),1)),n=eq \b\lc\(\rc\)(\a\vs4\al\c1(cs \f(x,4),cs2\f(x,4))),记f(x)=m·n.
(1)若f(x)=1,求cseq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,3)))的值;
(2)在锐角三角形ABC中,内角A,B,C的对边分别是a,b,c,且满足(2a-c)csB=bcsC,求f(2A)的取值范围.
高考数学(理数)一轮复习05《平面向量与复数》单元测试 (含详解): 这是一份高考数学(理数)一轮复习05《平面向量与复数》单元测试 (含详解),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高考数学(理数)一轮复习检测卷:4.3《复数、算法初步》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:4.3《复数、算法初步》 (学生版),共4页。
高考数学(理数)一轮复习单元AB卷05《函数综合》(学生版): 这是一份高考数学(理数)一轮复习单元AB卷05《函数综合》(学生版),共9页。试卷主要包含了选择题的作答,非选择题的作答,抛物线在点处切线的倾斜角是,若函数,则不等式的解集为,函数的极大值点为,已知函数,则,已知奇函数满足,则等内容,欢迎下载使用。