开学活动
搜索
    上传资料 赚现金

    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系定向测试试卷(含答案详解)

    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系定向测试试卷(含答案详解)第1页
    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系定向测试试卷(含答案详解)第2页
    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系定向测试试卷(含答案详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共29页。试卷主要包含了在平面直角坐标系中,点在,如果点P,平面直角坐标系中,将点A等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系定向测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,点关于原点对称的点的坐标是( )
    A. B. C. D.
    2、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是( )

    A.(-3,2) B.(3,2) C.(-3,-2) D.(3,-2)
    3、若点在第三象限,则点在( ).
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    4、在平面直角坐标系中,点在( )
    A.轴正半轴上 B.轴负半轴上
    C.轴正半轴上 D.轴负半轴上
    5、如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b=(  )
    A.﹣1 B.1 C.﹣5 D.5
    6、在平面直角坐标系中,点关于x轴对称的点的坐标是( )
    A. B. C. D.
    7、平面直角坐标系中,将点A(,)沿着x的正方向向右平移()个单位后得到B点,则下列结论:①B点的坐标为(,);②线段AB的长为3个单位长度;③线段AB所在的直线与x轴平行;④点M(,)可能在线段AB上;⑤点N(,)一定在线段AB上.其中正确的结论有( )
    A.2个 B.3个 C.4个 D.5个
    8、上海是世界知名金融中心,以下能准确表示上海市地理位置的是( )
    A.在中国的东南方 B.东经,北纬 C.在中国的长江出海口 D.东经.
    9、△ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到△A'B'C′,则点P的坐标是(  )

    A.(4,5) B.(4,4) C.(3,5) D.(3,4)
    10、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OPn(n为正整数),则点P2020的坐标是________.

    2、在平面直角坐标系中,将点P(3,﹣1)向上平移5个单位长度到点M,则点M关于原点对称的点的坐标是 _____.
    3、在平面直角坐标系中,若点P关于x轴的对称点Q的坐标是(﹣3,2),则点P关于y轴的对称点R的坐标是_____.
    4、在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为___________.
    5、点在直角坐标系的轴上,等于 ____.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图在平面直角坐标系中,△ABC各顶点的坐标分别为: A(4,0),B(﹣1,4),C(﹣3,1)
    (1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;
    (2)求△ABC的面积

    2、(探索发现)等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、B分别是y轴、x轴上两个动点, 直角边 AC 交x轴于点D,斜边BC交y轴于点E

    (1)如图1,已知C点的横坐标为﹣1,请直接写出点A的坐标
    (2)如图2,当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE
    (拓展应用)
    (3)如图3,若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、 AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请直接写出BP的长度为
    3、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).
    (1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;
    (2)在图中作出A1B1C1关于y轴对称的A2B2C2;
    (3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 .

    4、如图,在平面直角坐标系中、ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1)
    (1)在图中画出ABC关于点O的中心对称图形,并写出点,点,点的坐标;
    (2)求的面积.

    5、在如图所示的平面直角坐标系中,A点坐标为.

    (1)画出关于y轴对称的;
    (2)求的面积.
    6、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).
    (1)作出△ABC关于y轴的对称图形△A'B'C';
    (2)写出点A',B',C'的坐标;
    (3)在y轴上找一点P,使PA+PC的长最短.

    7、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).
    (1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;
    (2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;
    (3)连接CE,CF,请直接写出△CEF的面积.

    8、如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1).

    (1)请在图中画出△ABC关于y轴对称的△A1B1C1,
    (2)并写出△A1B1C1的各点坐标.
    9、已知点A(a+2b,1),B(﹣2,2a﹣b),若点A,B关于y轴对称,求a+b的值.
    10、如图,在所给网格图(每小格边长均为1的正方形)中完成下列各题:
    (1)△ABC的面积为   ;
    (2)画出格点△ABC(顶点均在格点上)关于x轴对称的△A1B1C1;
    (3)在y轴上画出点Q,使QA+QC最小.(保留画的痕迹)


    -参考答案-
    一、单选题
    1、A
    【分析】
    关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.
    【详解】
    解:点关于原点对称的点的坐标是:
    故选A
    【点睛】
    本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.
    2、D
    【分析】
    由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.
    【详解】
    解:∵“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),
    ∴建立平面直角坐标系,如图所示:

    ∴“东风标致”的坐标是(3,2);
    故选:D.
    【点睛】
    本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
    3、A
    【分析】
    根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
    【详解】
    ∵点P(m,n)在第三象限,
    ∴m<0,n<0,
    ∴-m>0,-n>0,
    ∴点在第一象限.
    故选:A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    4、B
    【分析】
    依据坐标轴上的点的坐标特征即可求解.
    【详解】
    解:∵点(,),纵坐标为
    ∴点(,)在x轴负半轴上
    故选:B
    【点睛】
    本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为,y轴上点的横坐标为.
    5、B
    【分析】
    根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.
    【详解】
    解:∵点P(﹣2,b)和点Q(a,﹣3),
    又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
    ∴a=﹣2,b=3.
    ∴a+b=1,
    故选:B.
    【点睛】
    本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y),正确记忆横纵坐标的关系是解题关键.
    6、C
    【分析】
    根据若两点关于 轴对称,横坐标不变,纵坐标互为相反数,即可求解
    【详解】
    解:点关于x轴对称的点的坐标是
    故选:C
    【点睛】
    本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,横坐标不变,纵坐标互为相反数;若两点关于y轴对称,横坐标互为相反数,纵坐标不变是解题的关键.
    7、B
    【分析】
    根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断①,根据平移的性质即可求得的长,进而判断②,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断③,根据纵坐标的特点即可判断④⑤
    【详解】
    解:∵点A(,)沿着x的正方向向右平移()个单位后得到B点,
    ∴B点的坐标为(,);
    故①正确;
    则线段AB的长为;
    故②不正确;
    ∵A(,),B(,);纵坐标相等,即点A,B到x轴的距离相等
    ∴线段AB所在的直线与x轴平行;
    故③正确
    若点M(,)在线段AB上;
    则,即,不存在实数
    故点M(,)不在线段AB上;
    故④不正确
    同理点N(,)在线段AB上;
    故⑤正确
    综上所述,正确的有①③⑤,共3个
    故选B
    【点睛】
    本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.
    8、B
    【分析】
    根据有序数对的性质解答.
    【详解】
    解:能准确表示上海市地理位置的是东经,北纬,
    故选:B.
    【点睛】
    此题考查了表示平面上点的位置的方法:有序数对,需用两个有序数量来表示某一位置,掌握有序数对的性质是解题的关键.
    9、B
    【分析】
    对应点的连线段的垂直平分线的交点,即为所求.
    【详解】
    解:如图,点即为所求,,

    故选:B.
    【点睛】
    本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心.
    10、C
    【分析】
    利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.
    【详解】
    解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,
    点B的横坐标是:33=6,纵坐标为:5+4=1,
    即(6,1).
    故选:C.
    【点睛】
    本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.
    二、填空题
    1、(0,)
    【分析】
    根据题意得出OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=8=23,OP5=16=24…,OPn=2n-1,再利用旋转角度得出点P2020的坐标与点P4的坐标在同一直线上,进而得出答案.
    【详解】
    解:∵点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;
    ∴OP1=1,OP2=2,
    ∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,
    ∴OPn=2n-1,
    由题意可得出线段每旋转8次旋转一周,
    ∵2020÷8=252…4,
    ∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,
    ∴点P2020的坐标是(0,).
    故答案为:(0,).
    【点睛】
    此题主要考查了点的变化规律,根据题意得出点P2020的坐标与点P4的坐标在同一直线上是解题关键.
    2、
    【分析】
    根据点的平移规律,可得平移后的点,根据关于原点对称的点的横、纵坐标都互为相反数,可得答案.
    【详解】
    将点向上平移5个单位长度得到点,
    点M关于原点对称的点的坐标是,
    故答案为:.
    【点睛】
    本题考查了平移与坐标变换,利用关于原点对称的点的横、纵坐标都互为相反数是解题关键.
    3、
    【分析】
    根据题意直接利用关于x轴、y轴对称点的性质进行分析即可得出答案.
    【详解】
    解:∵点P关于x轴的对称点Q的坐标是(﹣3,2),
    ∴点P的坐标为(﹣3,﹣2),
    ∴点P关于y轴的对称点R的坐标是(3,﹣2),
    故答案为:(3,﹣2).
    【点睛】
    本题主要考查关于x轴、y轴对称点的性质,正确掌握横、纵坐标的关系是解题的关键.
    4、5
    【分析】
    首先在坐标系中标出A、B两点坐标,由于B点在x轴上,所以面积较为容易计算,根据三角形面积的计算公式,即可求出△AOB的面积.
    【详解】
    解:如图所示,

    过A点作AD垂直x轴于D点,则h=2,
    ∴.
    故答案为:5.
    【点睛】
    本题主要考查的是坐标系中三角形面积的求法,需要准确对点位进行标注,并根据公式进行求解即可.
    5、-1
    【分析】
    让纵坐标为0得到m的值,计算可得点P的坐标.
    【详解】
    解:∵点P(3,m+1)在直角坐标系x轴上,
    ∴m+1=0,
    解得m=-1,
    故选:-1.
    【点睛】
    考查点的坐标的确定;用到的知识点为:x轴上点的纵坐标为0.
    三、解答题
    1、(1)见解析;(2)11.5
    【分析】
    (1)直接利用关于x轴对称点的性质,进而得出答案;
    (2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.
    【详解】
    解:(1)如图所示

    (2)
    【点睛】
    此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.
    2、(1)A(0,1);(2)见解析;(3)不变,2
    【分析】
    (1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△BAO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;
    (2)过点C作CG⊥AC交y轴于点G,则△ACG≌△BAD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论;
    (3)BP的长度不变,理由如下:如图(3),过点C作CH⊥y轴于点H,构建全等三角形:△CBH≌△BAO(AAS),结合全等三角形的对应边相等推知:CH=BO,BH=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPH≌△DPB,故BP=HP=2.
    【详解】
    解:(1)如图(1),过点C作CF⊥y轴于点F,

    ∵CF⊥y轴于点F,
    ∴∠CFA=90°,∠ACF+∠CAF=90°,
    ∵∠CAB=90°,
    ∴∠CAF+∠BAO=90°,
    ∴∠ACF=∠BAO,
    在△ACF和△ABO中,

    ∴△ACF≌△BAO(AAS),
    ∴CF=OA=1,
    ∴A(0,1);
    (2)如图2,过点C作CG⊥AC交y轴于点G,

    ∵CG⊥AC,
    ∴∠ACG=90°,∠CAG+∠AGC=90°,
    ∵∠AOD=90°,
    ∴∠ADO+∠DAO=90°,
    ∴∠AGC=∠ADO,
    在△ACG和△ABD中,,
    ∴△ACG≌△BAD(AAS),
    ∴CG=AD=CD,∠ADB=∠AGC,
    ∵∠ACB=45°,∠ACG=90°,
    ∴∠DCE=∠GCE=45°,
    在△DCE和△GCE中,,
    ∴△DCE≌△GCE(SAS),
    ∴∠CDE=∠AGC,
    ∴∠ADB=∠CDE;
    (3)BP的长度不变,理由如下:
    如图,过点C作CH⊥y轴于点H.

    ∵∠ABC=90°,
    ∴∠CBH+∠ABO=90°.
    ∵∠BAO+∠ABO=90°,
    ∴∠CBH=∠BAO.
    ∵∠CHB=∠AOB=90°,AB=AC,
    ∴△CBH≌△BAO(AAS),
    ∴CH=BO,BH=AO=4.
    ∵BD=BO,
    ∴CH=BD.
    ∵∠CHP=∠DBP=90°,∠CPE=∠DPB,
    ∴△CPH≌△DPB(AAS),
    ∴BP=HP=2.
    故答案为:2.
    【点睛】
    本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形.
    3、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)
    【分析】
    (1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;
    (2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;
    (3)利用平移变换的性质,轴对称变换的性质解决问题即可.
    【详解】
    解:(1)如图,△A1B1C1即为所求;
    (2)如图,△A2B2C2即为所求;

    (3)由题意得:P(﹣a﹣4,b﹣5).
    故答案为:(﹣a﹣4,b﹣5);
    【点睛】
    本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.
    4、(1)点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1),画图见解析;(2)
    【分析】
    (1)先根据关于原点对称的点的坐标特征求出点,点,点的坐标,然后描出点,点,点,最后顺次连接点,点,点即可;
    (2)根据的面积等于其所在的长方形面积减去周围三个三个小三角形面积求解即可.
    【详解】
    解:(1)∵是△ABC关于原点对称的中心对称图形, A(4,6),B(5,2),C(2,1),
    ∴点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1);
    ∴如图所示,即为所求;

    (2)由图可知 .
    【点睛】
    本题主要考查了画中心对称图形,关于原点对称的点的坐标特征,三角形面积,解题的关键在于能够熟练掌握关于原点对称的点的坐标特征.
    5、(1)见解析;(2).
    【分析】
    (1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;
    (2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.
    【详解】
    (1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;

    (2)S△ABC=3×3=.
    【点睛】
    本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.
    6、(1)见解析;(2)A′(1,5),B′(1,0),C′(4,3);(3)见解析
    【分析】
    (1)分别作出点A、B、C关于y轴的对称点,再收尾顺次连接即可得;
    (2)根据△A'B'C'各顶点的位置,写出其坐标即可;
    (3)连接PC,则PC=PC′,根据两点之间线段最短,可得PA+PC的值最小.
    【详解】
    解:(1)如图所示,△A′B′C′为所求作;

    (2)由图可得,A′(1,5),B′(1,0),C′(4,3);
    (3)如图所示,连接AC′,交y轴于点P,则点P即为所求作.
    【点睛】
    本题主要考查了利用轴对称变换作图以及最短距离的问题,解题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,运用轴对称变换来解决,多数情况要作点关于某直线的对称点.关于y轴对称的点,纵坐标相同,横坐标互为相反数.
    7、(1)作图见详解;(2)作图见详解;(3)的面积为2.
    【分析】
    (1)直接在坐标系中描点,然后依次连线即可;
    (2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;
    (3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.
    【详解】
    解:(1)如图所示,即为所求;

    (2)A、B、C三点关于x轴对称的点的坐标分别为:,,,
    然后描点、连线,
    ∴即为所求;
    (3)由图可得:SΔCEF=12×2×2=2,
    ∴的面积为2.
    【点睛】
    题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.
    8、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1).
    【分析】
    (1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;
    (2)根据所作图形可得答案.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求作.

    (2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).
    【点睛】
    本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
    9、
    【分析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求出a、b的值,然后相加计算即可得解.
    【详解】
    解:∵点A(a+2b,1),B(﹣2,2a﹣b)关于y轴对称,
    ∴,
    解得,
    ∴a+b=.
    【点睛】
    本题考查了关于y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    10、(1)5;(2)见解析;(3)见解析
    【分析】
    (1)利用“补全矩形法”求解△ABC的面积;
    (2)找到A、B、C三点关于x轴的对称点,顺次连接可得△A1B1C1;
    (3)作点A关于y轴的对称点A',连接A'C,则A'C与y轴的交点即是点Q的位置.
    【详解】
    解:(1)如图所示:

    S△ABC=3×4-×2×2-×2×3-×4×1=5.
    (2)如图所示:

    (3)如图所示:

    【点睛】
    本题考查了轴对称作图及最短路径的知识,难度一般,解答本题注意“补全矩形法”求解格点三角形面积的应用.

    相关试卷

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共33页。试卷主要包含了平面直角坐标系中,点P,已知点A等内容,欢迎下载使用。

    数学第十五章 平面直角坐标系综合与测试当堂检测题:

    这是一份数学第十五章 平面直角坐标系综合与测试当堂检测题,共23页。试卷主要包含了直角坐标系中,点A与点B关于等内容,欢迎下载使用。

    2020-2021学年第十五章 平面直角坐标系综合与测试同步达标检测题:

    这是一份2020-2021学年第十五章 平面直角坐标系综合与测试同步达标检测题,共26页。试卷主要包含了已知A,点A关于y轴的对称点A1坐标是,若点P等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map