年终活动
搜索
    上传资料 赚现金

    2022年沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(含答案解析)

    立即下载
    加入资料篮
    2022年沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(含答案解析)第1页
    2022年沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(含答案解析)第2页
    2022年沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(含答案解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试习题,共30页。试卷主要包含了若平面直角坐标系中的两点A,已知A等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是      A.(3,﹣2) B.(2,﹣3) C.(﹣3,2) D.(﹣2,﹣3)2、点A(-3,1)到y轴的距离是(  )个单位长度.A.-3 B.1 C.-1 D.33、在△ABC中,ABAC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是(    A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)4、若平面直角坐标系中的两点Aa,3),B(1,b)关于y轴对称,则ab的值是(  A.2 B.-2 C.4 D.-45、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点AB分别对应点CD,若C(5,x),Dy,0),则xy的值是(    A.﹣1 B.0 C.1 D.26、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是(    A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)7、如图,的顶点坐标为,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是(    ).A. B. C. D.8、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是(  A.(-3,2) B.(3,2) C.(-3,-2) D.(3,-2)9、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点的中点,点上运动,当时,点的坐标是(    )A. B. C. D.10、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是(  )A.(-1,6) B.(-1,2) C.(-1,1) D.(4,1)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平面直角坐标系中,是边长为2的等边三角形,作关于点成中心对称,再作于点成中心对称,如此作下去,则的顶点的坐标是________.2、点与点关于x轴对称,则的值为___________.3、已知在平面直角坐标系中,点在第一象限,且点轴的距离为2,到轴的距离为5,则的值为______.4、如图,的顶点都在正方形网格的格点上,点A的坐标为,将沿坐标轴翻折,则点C的对应点的坐标是______.5、在平面直角坐标系中,点,关于y轴对称,则的值为____________.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)观察图,易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点的位置,并写出他们的坐标:                    归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(ab)关于第一、三象限的角平分线l的对称点的坐标为          (不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣3,﹣4),试在直线l上确定一点Q,使点QDE两点的距离之和最小.2、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上.(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点DEF与点ABC对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(﹣3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点PQM(点PQM与点DEF对应),画出三角形PQM,并直接写出点P的坐标.3、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1(2)在图中作出A1B1C1关于y轴对称的A2B2C2(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(ab)在A2B2C2内部的对应点P2的坐标为      4、如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为_______;点B关于y轴对称的点坐标为_______;(2)若网格上的每个小正方形的边长为1,则△ABC的面积是_______.5、如图,方格图中每个小正方形的边长为1,点ABC都是格点.(1)画出△ABC关于直线MN对称的(2)若B为坐标原点,请写出的坐标,并直接写出的长度..(3)如图2,AC是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)6、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点OABC的顶点都在格点上.(1)在图中作出DEF,使得DEEABC关于x轴对称;(2)写出DE两点的坐标:D      E      (3)求DEF的面积.7、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4).(1)画出△ABC关于x轴对称的△A1B1C1ABC的对应点分别为A1B1C1(2)画出△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2ABC的对应点分别为A2B2C2.连接B2C2,并直接写出线段B2C2的长度.8、如图所示的方格纸中,每个小方格的边长都是,点(1)作关于轴对称的(2)通过作图在轴上找出点,使最小,并直接写出点的坐标.9、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).(1)请在图中画出ABC(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1(3)若ABC 内有一点P(ab),则点P经上述平移、翻折后得到的点P1的坐是        10、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位后得到对应的(2)再请你画出将沿x轴翻折后得到的(3)若连接,请你直接写出四边形的面积. -参考答案-一、单选题1、D【分析】根据点关于x轴对称,横坐标不变,纵坐标变为相反数解答即可.【详解】解:点P(﹣2,3)关于x轴对称的点的坐标是(﹣2,﹣3).故选:D【点睛】本题考查了直角坐标系中关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.2、D【分析】由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.【详解】解:由题意知轴的距离为轴的距离是个单位长度故选D.【点睛】本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点轴的距离=;到轴的距离=3、A【分析】由题意可知BOCO,又ABAC,得点Ay轴上,即可求解.【详解】解:由题意可知BOCO∵又ABACAOBC∴点Ay轴上,∴选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A.【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.4、A【分析】直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.【详解】解:依题意可得a=-1,b=3ab=2故选A【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.5、C【分析】由对应点坐标确定平移方向,再由平移得出xy的值,即可计算x+y【详解】A(3,﹣2),B(1,0)平移后的对应点C(5,x),Dy,0),∴平移方法为向右平移2个单位,x=﹣2,y=3,x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.6、A【分析】根据点FN关于原点对称,即可求解.【详解】解:∵F点与N点关于原点对称,点F的坐标是(3,2),N点坐标为(﹣3,﹣2).故选:A【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.7、A【分析】画出旋转平移后的图形即可解决问题.【详解】解:旋转,平移后的图形如图所示,故选:A【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.8、D【分析】由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.【详解】解:∵“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),∴建立平面直角坐标系,如图所示:∴“东风标致”的坐标是(3,2);故选:D.【点睛】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9、A【分析】由点的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标【详解】解:过点PPMOD于点M∵长方形的顶点的坐标分别为,点的中点,∴点D(5,0)PMODOMDM即点M(2.5,0)∴点P(2.5,4),故选:A【点睛】此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.10、A【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】∴得到的点的坐标是故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.二、填空题1、【分析】首先根据△是边长为2的等边三角形,可得的坐标为的坐标为;然后根据中心对称的性质,分别求出点的坐标各是多少;最后总结出的坐标的规律,求出的坐标是多少即可.【详解】解:是边长为2的等边三角形,的坐标为:的坐标为:与△关于点成中心对称,与点关于点成中心对称,的坐标是:与△关于点成中心对称,与点关于点成中心对称,的坐标是:与△关于点成中心对称,与点关于点成中心对称,的坐标是:的横坐标是:的横坐标是:为奇数时,的纵坐标是:,当为偶数时,的纵坐标是:顶点的纵坐标是:是正整数)的顶点的坐标是:的顶点的横坐标是:,纵坐标是:故答案为:【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出的横坐标和纵坐标是解题的关键.2、5【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得ab的值,再代入计算即可.【详解】解:与点关于x轴对称,故答案为【点睛】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.3、7【分析】由题意得,,即可得.【详解】解:由题意得,故答案为:7.【点睛】本题考查了点的坐标特征,解题的关键是理解题意.4、【分析】根据题意,分两种情况讨论:点C关于x轴翻折;点C关于y轴翻折;分别根据翻折情况坐标点的特点求解即可得.【详解】解:点C关于坐标轴翻折,分两种情况讨论:C关于x轴翻折,横坐标不变,纵坐标互为相反数可得:C关于y轴翻折,纵坐标不变,横坐标互为相反数可得:故答案为:【点睛】题目主要考查坐标系中轴对称的点的特点,理解题意,熟练掌握轴对称点的特点是解题关键.5、5【分析】关于轴对称的两个点的横坐标互为相反数,纵坐标不变,根据原理直接求解的值,再代入进行计算即可.【详解】解:,关于y轴对称, 故答案为:5【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.三、解答题1、(1)(3,5),(5,﹣2);(2)(ba);(3)Q(-3,-3)【分析】(1)根据点关于直线对称的定义,作出BC两点关于直线l的对称点B′、C′,写出坐标即可.(2)通过观察即可得出对称结论.(3)作点E关于直线l的对称点E′(﹣4,﹣3),连接DE′交直线lQ,此时QE+QD的值最小.【详解】解:(1)B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置如图所示.B′(3,5),C′(5,﹣2).故答案为B′(3,5),C′(5,﹣2).(2)由(1)可知点Pab)关于第一、三象限的角平分线l的对称点P′的坐标为P′(ba).(3)作点E关于直线l的对称点E′(﹣4,﹣3),连接DE′交直线lQ∵两点之间线段最短∴此时QE+QD的值最小,由图象可知Q点坐标为(-3,-3).【点睛】本题考查了坐标系中的轴对称变化,点关于第一、三象限角平分线对称的点的坐标为;关于第二、四象限角平分线对称的点的坐标为.2、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【分析】(1)根据平移的特点先找出DEF所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点PQM,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,△PQM即为所求;PD(-3,0)横坐标减2,纵坐标加3得到的,∴点P的坐标为(-5,3).【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.3、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)【分析】(1)利用平移变换的性质分别作出ABC 的对应点A1B1C1即可;(2)利用轴对称变换的性质分别作出A1B1C1的对应点A2B2C2即可;(3)利用平移变换的性质,轴对称变换的性质解决问题即可.【详解】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)由题意得:P(﹣a﹣4,b﹣5).故答案为:(﹣a﹣4,b﹣5);【点睛】本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.4、(1)图见解析,(-1,-3),(-2,0);(2)9【分析】(1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;(2)由题意利用△ABC所在矩形面积减去周围三角形面积进行计算进而得出答案.【详解】解:(1)如图,△A1B1C1即为所作,A关于x轴对称的点坐标为 (-1,-3);B关于y轴对称的点坐标为:(-2,0);故答案为:(-1,-3),(-2,0);(2)△ABC的面积是:4×5-×2×4-×3×3-×1×5=9.故答案为:9.【点睛】本题主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键.5、(1)画图见解析;(2);(3)画图见解析【分析】(1)分别确定关于对称的对称点 再顺次连接从而可得答案;(2)根据在坐标系内的位置直接写其坐标与的长度即可;(3)先确定关于的对称点,再连接 从而可得答案.【详解】解:(1)如图1,是所求作的三角形,(2)如图1,为坐标原点,  (3)如图2,点即为所求作的点.【点睛】本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.6、(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5【分析】(1)先找出点ABC关于x轴的对称点,然后依次连接即可得; (2)根据△DEF的位置,即可得出DE两点的坐标;(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.【详解】解:(1)如图所示,△DEF即为所求;(2)由图可得,D(﹣1,﹣4),E(﹣4,1);故答案为:(﹣1,﹣4),(﹣4,1);(3)面积为9.5.【点睛】题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.7、(1)作图见解析;(2)作图见解析,【分析】(1)关于轴对称,即对应点横坐标不变,纵坐标互为相反数,找出坐标即可;(2)根据旋转的性质可画出图形,即可找出的坐标,由即可得出答案.【详解】(1)关于轴对称的如图所作,,(2)绕原点逆时针方向旋转得到的如图所示,由旋转的性质得:【点睛】本题考查轴对称与旋转作图,掌握轴对称的性质以及旋转的性质是解题的关键.8、(1)见解析;(2)见解析,点P的坐标为(−3,0)       【分析】(1)先分别作出点ABC关于y轴的对称点,然后再顺次连接可得;(2)作点A关于x轴的对称点A″,再连接A″Cx轴于点P,再确定点P的坐标即可.【详解】解:(1)如图所示:即为所求. (2)作点A关于x轴的对称点A′′,连结A′′C,交x轴于点P,点P即为所求,点P的坐标为(−3,0)    【点睛】本题主要考查作图﹣轴对称变换,熟练掌握轴对称变换的定义和性质及最短路径问题是解答本题的关键.9、(1)见解析;(2)见解析;(3)(a-5,-b)【分析】(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出△ABC(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1(3)根据点的坐标平移规律可得结论.【详解】解:(1)如图,ABC即为所画.(2)如图,A1B1C1即为所画.(3)点P(ab)向左平移5个单位后的坐标为(a-5,b),关于x轴对称手点的坐标为(a-5,-b).    故答案为:(a-5,-b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置.10、(1)见解析;(2)见解析;(3)16【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2B2C2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积==16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键. 

    相关试卷

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共25页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共27页。试卷主要包含了点P关于y轴对称点的坐标是.,已知点P,在平面直角坐标系中,点A等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂达标检测题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂达标检测题,共28页。试卷主要包含了直角坐标系中,点A与点B关于,点A个单位长度.,点在第四象限,则点在第几象限等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map