2021-2022学年北师大版七年级数学下册期末定向练习 卷(Ⅰ)(含答案及详解)
展开
这是一份2021-2022学年北师大版七年级数学下册期末定向练习 卷(Ⅰ)(含答案及详解),共21页。试卷主要包含了下列图形是轴对称图形的是等内容,欢迎下载使用。
北师大版七年级数学下册期末定向练习 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )A.70° B.80° C.100° D.110°2、下列事件是必然事件的是( )A.任意选择某电视频道,它正在播新闻联播B.温州今年元旦当天的最高气温为15℃C.在装有白色和黑色的袋中摸球,摸出红球D.不在同一直线上的三点确定一个圆3、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )A.60° B.90° C.120° D.150°4、如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF于点D,连接EB.下列结论:①∠FAC=40°;②AF=AC;③∠EFB=40°;④AD=AC,正确的个数为( )A.1个 B.2个 C.3个 D.4个5、一个三角形的两边长分别为5和2,若该三角形的第三边的长为偶数,则该三角形的第三边的长为( )A.6 B.8 C.6或8 D.4或66、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°7、下列图形是轴对称图形的是( )A. B. C. D.8、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )A.1个 B.2个 C.3个 D.4个9、下列垃圾分类的标识中,是轴对称图形的是( )A.①② B.③④ C.①③ D.②④10、小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在网格中与ABC成轴对称的格点三角形一共有 ___个.2、如图,AE与BD相交于点C,AC=EC,BC=DC,AB=5cm,点P从点A出发,沿A→B方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点B时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)AP的长为 ___cm.(用含t的代数式表示)(2)连接PQ,当线段PQ经过点C时,t=___s.3、如图,在中,平分,于点E,若的面积为,则阴影部分的面积为________.4、如图,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面积为58,△ADC的面积为30,则△ABD的面积等于______.5、若球体体积为,半径为,则.其中变量是_______、_______,常量是________.三、解答题(5小题,每小题10分,共计50分)1、如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距 千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为 小时;(3)乙从出发起,经过 小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?2、一只不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,将球搅匀,从中任意摸出个球.(1)会出现哪些可能的结果?(2)能够事先确定摸到的一定是红球吗?(3)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?(4)怎样改变袋子中红球、绿球、白球的个数,使摸到这三种颜色的球的概率相同?3、按照要求进行计算:(1)计算:(2)利用乘法公式进行计算:4、巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?5、用一根长是20cm的细绳围成一个长方形,这个长方形的一边的长为xcm,它的面积为.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?自变量的取值范围是怎样的?(2)在下面的表格中填上当x从1变到9时(每次增加1),y的相应值;123456789 (3)根据表格中的数据,请你猜想一下:怎样围才能使得到的长方形的面积最大?最大是多少?(4)请你估计一下:当围成的长方形的面积是时,x的值应在哪两个相邻整数之间? -参考答案-一、单选题1、B【分析】先证明DEBC,根据平行线的性质求解.【详解】解:因为∠B=∠ADE=70°所以DEBC,所以∠DEC+∠C=180°,所以∠C=80°.故选:B.【点睛】此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.2、D【分析】由题意依据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】解:A. 任意选择某电视频道,它正在播新闻联播,是随机事件,选项不符合;B. 温州今年元旦当天的最高气温为15℃,是随机事件,选项不符合;C. 在装有白色和黑色的袋中摸球,摸出红球,是不可能事件,选项不符合;D. 不在同一直线上的三点确定一个圆,是必然事件,选项符合.故选:D.【点睛】本题考查确定事件和不确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、C【分析】先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵AB∥CD,∴∠1=∠CEF,又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.4、C【分析】由“SAS”可证△ABC≌△AEF,由全等三角形的性质依次判断可求解.【详解】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正确,∴∠BAE=∠FAC=40°,故①正确,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=40°,故③正确,无法证明AD=AC,故④错误,故选:C.【点睛】本题考查全等三角形的判定与性质,是重要考点,掌握相关知识是解题关键.5、D【分析】根据三角形两边之和大于第三边确定第三边的范围,根据题意计算即可.【详解】解:设三角形的第三边长为x,则5﹣2<x<5+2,即3<x<7,∵三角形的第三边是偶数,∴x=4或6,故选:D.【点睛】本题考查了三角形三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.6、D【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, , ∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.7、C【分析】根据轴对称图形的概念解答即可.【详解】A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误.故选C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.9、B【详解】解:图③和④是轴对称图形,故选:B.【点睛】本题考查了轴对称图形,熟记轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.10、A【分析】根据概率公式直接计算即可,总共6个面,点数为2的一面出现的情况只有1种, 可得点数为2的一面朝上的概率【详解】根据题意,小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为故选A【点睛】本题考查了简单概率,理解题意是解题的关键.二、填空题1、4【分析】直接利用轴对称图形的性质结合题意即可得出答案.【详解】解:如图所示:都是符合题意的图形.故在网格中与ABC成轴对称的格点三角形一共有4个,故答案为:4.【点睛】此题主要考查了轴对称的性质,正确掌握轴对称图形的性质是解题关键.2、2【分析】(1)根据路程=速度×时间求解即可;(2)根据全等三角形在判定证明△ACB≌△ECD可得AB=DE,∠A=∠E,当PQ经过点C时,可证得△ACP≌△ECQ,则有AP=EQ,进而可得出t的方程,解方程即可.【详解】解:(1)由题意知:AP=2t,0<t≤,故答案为:2t;(2)∵AC=EC,∠ACB=∠ECD,BC=DC,∴△ACB≌△ECD(SAS),∴DE=AB=5cm,∠A=∠E,当PQ经过点C时,∵∠A=∠E,AC=EC,∠ACP=∠ECQ,∴△ACP≌△ECQ(ASA),∴AP=EQ,又∵AP=2t,DQ=t,∴2t=5-t,解得:t=,故答案为:.【点睛】本题考查全等三角形的应用,熟练掌握全等三角形的判定与性质是解答的关键.3、6【分析】证点E为AD的中点,可得△ACE与△ACD的面积之比,同理可得△ABE和△ABD的面积之比,即可解答出.【详解】解:如图,平分,于点E,∴,,∵,∴≌∴,∴S△ACE:S△ACD=1:2,同理可得,S△ABE:S△ABD=1:2,∵S△ABC=12,∴阴影部分的面积为S△ACE+S△ABE=S△ABC=×12=6.故答案为6.【点睛】本题主要考查了全等三角形的判定与性质及三角形面积的等积变换,解题关键是明确三角形的中线将三角形分成面积相等的两部分.4、28【分析】延长交于,由证明,得出,得出,进而得出,即可得出结果.【详解】如图所示,延长交于, ∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案为:28.【点睛】此题考查全等三角形的判定与性质,三角形面积的计算,证明三角形全等得出是解题关键.5、 【分析】根据函数常量与变量的知识点作答.【详解】∵函数关系式为,∴是自变量,是因变量,是常量.故答案为:,,.【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.三、解答题1、(1)10;(2)1;(3)3;(4)不一样,理由见解析;【分析】(1)根据t=0时甲乙两人的路程差即为两人的距离解答即可;(2)根据s不变的时间即为修车时间解答即可;(3)根据两人的函数图象的交点即为相遇,写出时间即可;(4)利用速度与时间路程的关系解答即可;【详解】解:(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为3(4)乙骑自行车出故障前的速度与修车后的速度不一样.理由如下:乙骑自行车出故障前的速度=15千米/小时.与修车后的速度=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.【点睛】此题主要考查了学生从图象中读取信息的能力,以及路程、速度、时间的关系等知识,解题的关键是灵活运用图中信息解决问题,所以中考常考题型.2、(1)从中任意摸出个球可能是红球,也可能是绿球或白球;(2)不能事先确定摸到的一定是红球;(3)摸到白球的可能性最大,摸到红球的可能性最小;(4)只要袋子中红球、绿球和白球的数量相等即可.【分析】(1)根据事情发生的可能性,即可进行判断;(2)根据红球的多少判断,只能确定有可能出现;(3)根据白球的数量最多,摸出的可能性就最大,红球的数量最少,摸出的可能性就最小;(4)根据概率相等就是出现的可能性一样大,可让数量相等即可.【详解】解:(1)从中任意摸出1个球可能是红球,也可能是绿球或白球;(2)不能事先确定摸到的一定是红球;(3)摸到白球的可能性最大,摸到红球的可能性最小;(4)只要袋子中红球、绿球和白球的数量相等即可.【点睛】此题主要考查了事件发生的可能性,关键是根据事件发生的可能大小和概率判断即可,比较简单的中考常考题.3、(1)(2)【分析】(1)先计算中括号内的整式乘法,再运用多项式除以单项式的法则计算即可;(2)运用平方差公式计算即可.【详解】解:(1)====(2)===.【点睛】本题考查了整式的乘除和乘法公式,解题关键是熟练掌握整式运算法则,熟练运用乘法公式进行计算.4、 (1)t,s;(2)2,6;(3)小明距起点的距离为300米.【分析】解析(1)观察函数图象即可找出谁是自变量谁是因变(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度=2(米/秒),小明的速度为=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题关键在于看懂图中数据5、(1)y=,x是自变量,;(2)见解析;(3)当长方形的长与宽相等,即x为5时,y的值最大,最大值为;(4)当围成的长方形的面积是时,x的值应在3和4之间或6和7之间.【分析】(1)根据周长的等量关系可得长方形的另一边为10-x,那么面积=x(10-x),自变量是x,取值范围是0<x<10;(2)把相关x的值代入(1)中的函数解析式求值即可;(3)根据表格可得x为5时,y的值最大;(4)观察表格21<y<24时,对应的x的取值范围即为所求.【详解】(1).x是自变量,.(2)当x从1变到9时(每次增加1),y的相应值列表如下1234567899162124252421169 (3)当长方形的长与宽相等,即x为5时,y的值最大,最大值为.(4)由表格可知,当围成的长方形的面积是时,x的值应在3和4之间或6和7之间.【点睛】本题考查了变量与函数,函数的表示方法,求函数值等知识.用到的知识点为:长方形的长与宽的和等于周长的一半;长方形的面积等于长×宽.
相关试卷
这是一份2021-2022学年度北师大版七年级数学下册期末定向测试 卷(Ⅰ)(含详解),共17页。试卷主要包含了下列事件中,是必然事件的是,下列语句中叙述正确的有,如果是完全平方式,那么的值是,如图,,,,则下列结论,函数中自变量x的取值范围是等内容,欢迎下载使用。
这是一份2021-2022学年度北师大版七年级数学下册期末定向攻克 卷(Ⅱ)(含详解),共18页。试卷主要包含了下列各式运算的结果可以表示为,下列图形中,不是轴对称图形的是等内容,欢迎下载使用。
这是一份2021-2022学年度北师大版七年级数学下册期末定向练习 卷(Ⅰ)(含答案详解),共20页。试卷主要包含了下列事件是必然事件的是,下列四个图形分别是节能,不透明的布袋内装有形状等内容,欢迎下载使用。