2021-2022学年北师大版七年级数学下册期末综合练习 (A)卷(含答案详解)
展开
这是一份2021-2022学年北师大版七年级数学下册期末综合练习 (A)卷(含答案详解),共19页。试卷主要包含了如图,C等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是( )
A.的值一定是
B.的值一定不是
C.m越大,的值越接近
D.随着m的增加,的值会在附近摆动,呈现出一定的稳定性
2、如图,直线AB和CD相交于点O,若∠AOC=125°,则∠BOD等于( )
A.55°B.125°C.115°D.65°
3、下列运算正确的是( ).
A.B.
C.D.
4、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )
A.164°12'B.136°12'C.143°88'D.143°48'
5、已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如下表所示:
下列说法错误的是( )
A.自变量是温度,因变量是传播速度B.温度越高,传播速度越快
C.当温度为时,声音可以传播D.温度每升高,传播速度增加
6、如图,C、D在线段BE上,下列说法:
①直线CD上以B、C、D、E为端点的线段共有6条;
②图中至少有2对互补的角;
③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;
④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.1个B.2个C.3个D.4个
7、如图,△ABC中,D,E分别为BC,AD的中点,若△CDE的面积使2,则△ABC的面积是( )
A.4B.5C.6D.8
8、如图,北京2022年冬奥会会徽,是将蒙汉两种文字的“冬”字融为一体而成.组成会徽的四个图案中是轴对称图形的是( )
A.B.C.D.
9、如图,AD,BE,CF依次是ABC的高、中线和角平分线,下列表达式中错误的是( )
A.AE=CEB.∠ADC=90°C.∠CAD=∠CBED.∠ACB=2∠ACF
10、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、有背面完全相同,正面分别画有等腰三角形、平行四边形、矩形、菱形、等腰梯形的卡片5张,现正面朝下放置在桌面上,将其混合后,并从中随机抽取一张,则抽中正面的图形一定是轴对称图形的卡片的概率为 __.
2、如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=_____.
3、一次研究中发现某个新冠肺炎病毒的尺寸大约0.00000003m,则0.00000003用科学记数法可写为_____.
4、判断下列事件的类型:(必然事件,随机事件,不可能事件)
(1)掷骰子试验,出现的点数不大于6._____________
(2)抽签试验中,抽到的序号大于0._____________
(3)抽签试验中,抽到的序号是0.____________
(4)掷骰子试验,出现的点数是7._____________
(5)任意抛掷一枚硬币,“正面向上”._____________
(6)在上午八点拨打查号台114,“线路能接通”.__________
(7)度量五边形外角和,结果是720度.________________
5、一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发______小时,快车追上慢车行驶了______千米,快车比慢车早______小时到达B地.从A地到B· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
地快车比慢车共少用了______小时.
三、解答题(5小题,每小题10分,共计50分)
1、某广场用如图1所示的同一种地砖拼图案,第一次拼成的图案如图2所示,共用地砖4块;第2次拼成的图案如图3所示,共用地砖;第3次拼成的图案如图4所示,共用地砖,….
(1)直接写出第4次拼成的图案共用地砖________块;
(2)按照这样的规律,设第次拼成的图案共用地砖的数量为块,求与之间的函数表达式
2、某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:
(1)柑橘损坏的概率估计值为 ;
(2)估计这批柑橘完好的质量为 千克;
(3)如果公司希望销售这些柑橘能够获得不低于25000元的利润,那么在出售(已去掉损坏的柑橘)时,每千克柑橘大约定价为多少元比较合适?
3、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.
4、如图△ABC中,已知∠A=60°,角平分线BD、CE交于点O.
(1)求∠BOC的度数;
(2)判断线段BE、CD、BC长度之间有怎样的数量关系,请说明理由.
5、化简:.
-参考答案-
一、单选题
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、D
【分析】
根据频率与概率的关系以及随机事件的定义判断即可
【详解】
投掷一枚质地均匀的硬币正面向上的概率是,而投掷一枚质地均匀的硬币正面向上是随机事件,是它的频率,随着m的增加,的值会在附近摆动,呈现出一定的稳定性;
故选:D
【点睛】
本题考查对随机事件的理解以及频率与概率的联系与区别.解题的关键是理解随机事件是都有可能发生的时间.
2、B
【分析】
根据对顶角相等即可求解.
【详解】
解:∵直线AB和CD相交于点O,∠AOC=125°,
∴∠BOD等于125°.
故选B.
【点睛】
本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.
3、B
【分析】
根据同底数幂相乘、幂的乘方、积的乘方、同底数幂相除逐项判断即可求解.
【详解】
解:A、,故本选项错误,不符合题意;
B、,故本选项正确,符合题意;
C、,故本选项错误,不符合题意;
D、,故本选项错误,不符合题意;
故选:B
【点睛】
本题主要考查了同底数幂相乘、幂的乘方、积的乘方、同底数幂相除,熟练掌握同底数幂相乘、幂的乘方、积的乘方、同底数幂相除法则是解题的关键.
4、D
【分析】
根据邻补角及角度的运算可直接进行求解.
【详解】
解:由图可知:∠AOC+∠BOC=180°,
∵∠COB=36°12',
∴∠AOC=180°-∠BOC=143°48',
故选D.
【点睛】
本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.
5、C
【分析】
根据所给表格,结合变量和自变量定义可得答案.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:A、自变量是温度,因变量是传播速度,故原题说法正确;
B、温度越高,传播速度越快,故原题说法正确;
C、当温度为10℃时,声音5s可以传播1680m,故原题说法错误;
D、温度每升高10℃,传播速度增加6m/s,故原题说法正确;
故选:C.
【点睛】
此题主要考查了常量与变量和通过表格获取信息,关键是掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.
6、B
【分析】
按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.
【详解】
解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;
②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;
③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;
④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,
∵BC=2,CD=DE=3,
∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.
故选B.
【点睛】
本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.
7、D
【分析】
根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出的面积.
【详解】
∵AD是BC上的中线,
∴,
∵CE是中AD边上的中线,
∴,
∴,即,
∵的面积是2,
∴.
故选:D.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等.
8、D
【分析】
根据轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A不是轴对称图形,故本选项不合题意
B不是轴对称图形,故本选项不合题意
C不是轴对称图形,故本选项不合题意
D是轴对称图形,故本选项符合题意
故选D
【点睛】
本题考察了轴对称图形的概念,熟练掌握应用轴对称图形的定义解决问题是关键点.
9、C
【分析】
根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.
【详解】
解:A、BE是△ABC的中线,所以AE=CE,故本表达式正确;
B、AD是△ABC的高,所以∠ADC=90,故本表达式正确;
C、由三角形的高、中线和角平分线的定义无法得出∠CAD=∠CBE,故本表达式错误;
D、CF是△ABC的角平分线,所以∠ACB=2∠ACF,故本表达式正确.
故选:C.
【点睛】
本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.
10、B
【分析】
由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.
【详解】
解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,
∴从袋中任意摸出一个球,摸出的球是红球的概率是:.
故选:B.
【点睛】
此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
二、填空题
1、
【分析】
卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,再根据概率公式=满足条件的样本个数总体的样本个数,可求出最终结果.
【详解】
解:卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,
根据概率公式,(轴对称图形).
故答案为:.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题主要考查概率问题,属于基础题,掌握轴对称图形的性质以及概率公式是解题关键.
2、33°
【分析】
由题意直接根据∠2=180°﹣∠COE﹣∠1,进行计算即可得出答案.
【详解】
解:由题意得:∠2=180°﹣∠COE﹣∠1=180°﹣90°﹣57°=33°.
故答案为:33°.
【点睛】
本题考查余角和补角的知识,属于基础题,注意数形结合思维分析的运用.
3、
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.00000003=
故答案为:
【点睛】
本题考察了绝对值小于1的数利用科学记数法表示,需要注意负整数指数幂是本题的易错点.
4、必然事件 必然事件 不可能事件 不可能事件 随机事件 随机事件 不可能事件
【分析】
根据随机事件、必然事件以及不可能事件的定义即可作出判断.
【详解】
解:(1)骰子最大的点数是6,所以掷骰子试验,出现的点数不大于6是必然事件;
(2)抽签试验中,序号都大于0,抽到的序号大于0是必然事件;
(3)抽签试验中,序号都大于0,抽到的序号是0是不可能事件;
(4) 骰子最大的点数是6,所以掷骰子试验,出现的点数是7是不可能事件;
(5)硬币有两面,正面和反面,任意抛掷一枚硬币,“正面向上”是随机事件;
(6)在上午八点拨打查号台114,“线路能接通”是随机事件;
(7)五边形外角和是,所以度量五边形外角和,结果是度是不可能事件.
【点睛】
此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、2 276 4 6
【分析】
根据横纵坐标的意义,分别分析得出即可.
【详解】
由图象直接可得出:一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,
则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地,从A地到B地快车比慢车共少用了18-(14-2)=6小时.
故答案为2,276,4,6.
【点睛】
此题主要考查了函数图象,从图象上获取正确的信息是解题关键.
三、解答题
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、(1)40;(2).
【分析】
(1)根据拼成图案的地砖块数规律,即可得到答案;
(2)根据,,,,……,进而得到与之间的函数表达式.
【详解】
(1)∵第一次拼成的图案,共用地砖4块;第2次拼成的图案,共用地砖;第3次拼成的图案,共用地砖,…,
∴第4次拼成的图案,共用地砖.
故答案是:40;
(2)第1次拼成如图2所示的图案共用4块地砖,即,
第2次拼成如图3所示的图案共用12块地砖,即,
第3次拼成如图4所示的图案共用24块地砖,即,
第4次拼成的图案共用40块地砖,即,
……
第次拼成的图案共用地砖:,
∴与之间的函数表达式为:.
【点睛】
本题主要考查探究图案与数的规律,找到图案与数的规律,是解题的关键.
2、(1)0.1;(2)9000;(3)每千克柑橘大约定价为5元比较合适.
【分析】
(1)根据图形即可得出柑橘损坏的概率;
(2)用整体1减去柑橘损坏的概率即可出柑橘完好的概率,再乘以10000千克即可解题;
(3)先设每千克柑橘大约定价为x元比较合适,根据题意列出方程,解方程即可解答.
【详解】
解:(1)由图可知,柑橘损坏概率估计值为0.1
故答案为:0.1;
(2)1-0.1=0.9,10000×0.9=9000(千克)
故答案:9000;
(3)设每千克柑橘大约定价为x元比较合适,由题意得,
9000x=25000+2×10000
解得:x=5
答:每千克柑橘大约定价为5元比较合适.
【点睛】
本题考查频率估计概率,解题关键是在图中找到必要信息,求出柑橘损坏的概率.
3、61.5°
【分析】
由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.
【详解】
解:∵OP平分∠AOC,∠AOC=38°,
∴∠AOP=∠COP=∠AOC=×38°=19°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,
∵ON平分∠POB
∴∠PON=∠BOP=×161°=80.5°,
∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.
【点睛】
本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.
4、(1)120°;(2)BC=BE+CD,理由见解析
【分析】
(1)利用角平分线的定义以及三角形内角和定理计算即可;
(2)只要证明∠BOF=∠BOE=60°,可得∠COD=∠COF=60°即可证明.
【详解】
解:(1)在△ABC中,∠A=60°,BD和CE分别平分∠ABC和∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,
∴∠BOC=180°﹣60°=120°.
(2)BC=BE+CD.理由如下:
在BC上截取BF=BE,连接OF,
∵BD平分∠ABC,
∴∠EBO=∠FBO,
在△OBE和△OBF中,
,
∴△OBE≌△OBF(SAS),
∴∠BOE=∠BOF,
∵∠BOC=120°,
∴∠BOE=60°,
∴∠BOF=∠COF=∠COD=60°,
∵OC=OC,∠OCD=∠OCF,
∴△COD≌△COF(ASA).
∴CF=CD,
∴BC=BF+CF=BE+CD.
【点睛】
本题考查全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.
5、
【分析】
先计算括号内的整式的乘法运算,再合并括号内的同类项,最后计算单项式除以单项式即可得到答案.
【详解】
解:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查的是整式的四则混合运算,平方差公式的应用,掌握“利用平方差公式进行简便运算与单项式除以单项式”是解本题的关键.
温度/
0
10
20
30
传播速度/
318
324
330
336
342
348
相关试卷
这是一份2021-2022学年度北师大版七年级数学下册期末综合练习 (A)卷(含详解),共19页。试卷主要包含了如图,C,下列运算正确的是,下列计算中,正确的是等内容,欢迎下载使用。
这是一份2021-2022学年北师大版七年级数学下册期末模拟 卷(Ⅲ)(含答案详解),共18页。试卷主要包含了如图,,,,则下列结论,点P,如图,点等内容,欢迎下载使用。
这是一份2021-2022学年北师大版七年级数学下册期末专项测评试题 卷(Ⅱ)(含答案详解),共20页。试卷主要包含了下列说法正确的是,如图,为估计池塘岸边A,若,那么的值是.,下列计算正确的是等内容,欢迎下载使用。