2021-2022学年度北师大版七年级数学下册期末测评 卷(Ⅲ)(含答案及详解)
展开
这是一份2021-2022学年度北师大版七年级数学下册期末测评 卷(Ⅲ)(含答案及详解),共20页。试卷主要包含了计算3a等内容,欢迎下载使用。
北师大版七年级数学下册期末测评 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在2×2正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中可以画出与△ABC成轴对称的格点三角形的个数为( )A.2个 B.3个 C.4个 D.5个2、下列四个标志中,是轴对称图形的是( )A. B. C. D.3、若,,则下列a,b,c的大小关系正确的( )A. B. C. D.4、自新冠肺炎疫情发生以来,莆田市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图是( )A.有症状早就医 B.打喷捂口鼻C.防控疫情我们在一起 D.勤洗手勤通风5、已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示,下列说法错误的是( )温度/℃﹣20﹣100102030传播速度/(m/s)318324330336342348A.自变量是传播速度,因变量是温度B.温度越高,传播速度越快C.当温度为10℃时,声音10s可以传播3360mD.温度每升高10℃,传播速度增加6m/s6、计算3a(5a﹣2b)的结果是( )A.15a﹣6ab B.8a2﹣6ab C.15a2﹣5ab D.15a2﹣6ab7、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )A.4个 B.3个 C.2个 D.1个8、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为( )A.12 B.10 C.8 D.69、如图,在中,,,AD平分交BC于点D,在AB上截取,则的度数为( ) A.30° B.20° C.10° D.15°10、有两根长度分别为7cm,11cm的木棒,下面为第三根的长度,则可围成一个三角形框架的是( )A.3cm B.4cm C.9cm D.19cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:+20210=_____.2、如图,与关于直线对称,则∠B的度数为________°.3、圆的半径为,圆的面积与半径之间有如下关系:.在这关系中,常量是______.4、一副三角板按如图方式放置,含45°角的三角板的斜边与含30°角的三角板的长直角边平行,则∠α的度数是______.5、在有理数的原有运算法则中,我们定义新运算“”如下:=,根据这个新规定可知=________.三、解答题(5小题,每小题10分,共计50分)1、我校开展垃圾分类网上知识竞赛,并从本校七年级随机抽取了部分学生的竞赛成绩进行整理、描述和分析(根据成绩共分A、B、C、D四个等级),其中获得A等级和C等级的人数相等.相应的条形统计图和扇形统计图如下:根据以上信息,解答下列问题:(1)共抽取了 名学生;(2)补全条形统计图,并求出扇形统计图中B等级对应的圆心角的度数;(3)A等级中有4名同学是女生,学校计划从A等级的学生中抽取1名参加区级垃圾分类网上知识竞赛,则抽到女生的概率是多少?2、如图,①过点Q作QD⊥AB,垂足为点D;②过点P作PE⊥AB,垂足为点E;③过点Q作QF⊥AC,垂足为点F;④连P,Q两点;⑤P,Q两点间的距离是线段______的长度;⑥点Q到直线AB的距离是线段______的长度;⑦点Q到直线AC的距离是线段______的长度;⑧点P到直线AB的距离是线段______的长度.3、在中,,是射线上一点,点在的右侧,线段,且,连结.(1)如图1,点在线段上,求证:.(2)如图2,点在线段延长线上,判断与的数量关系并说明理由.4、如图,是的角平分线,, 交于点E,,交 于点F.图中与有什么关系?为什么?5、在一次实验中,小明把一根弹簧的端固定,在其下端悬挂物体,下面是测得的弹簧的长度与所挂物体的质量的一组对应值:所挂物体的质量弹簧长度(1)在这个变化的过程中,自变量是 ;因变量是 ;(2)写出与之间的关系式,并求出当所挂重物为时,弹簧的长度为多少? -参考答案-一、单选题1、D【分析】在网格中画出轴对称图形即可.【详解】解:如图所示,共有5个格点三角形与△ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形.2、D【分析】利用轴对称图形的定义进行解答即可.【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3、C【分析】利用零次幂的含义求解的值,利用平方差公式求解的值,利用积的乘方的逆运算求解的值,再比较大小即可.【详解】解: 而 故选C【点睛】本题考查的是零次幂的含义,平方差公式的应用,积的乘方运算的逆运算,先计算的值再比较大小是解本题的关键.4、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行解答即可.【详解】解:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意.故选C.【点睛】本题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.5、A【分析】根据所给表格,结合变量和自变量定义可得答案.【详解】解:A、自变量是温度,因变量是传播速度,故原题说法错误;B、温度越高,传播速度越快,故原题说法正确;C、当温度为10℃时,声音10s可以传播3360m,故原题说法正确;D、温度每升高10℃,传播速度增加6m/s,故原题说法正确;故选:A.【点睛】此题主要考查了常量与变量,关键是掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.6、D【分析】根据单项式乘以多项式,先用单项式乘以多项式的每一项,再把所得的积相加计算.【详解】解:3a(5a﹣2b)=15a2﹣6ab.故选:D.【点睛】此题考查单项式乘多项式,关键是根据法则计算.7、B【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF,∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE,∴当∠AOF=50°时,∠DOE=50°;故①正确;∵OB平分∠DOG,∴∠BOD=∠BOG,∴∠BOD=∠BOG=∠EOF=∠AOC,故④正确;∵,∴∠BOD=180°-150°=30°,∴故③正确;若为的平分线,则∠DOE=∠DOG,∴∠BOG+∠BOD=90°-∠EOE,∴∠EOF=30°,而无法确定,∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.8、A【分析】利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.【详解】解:由题意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中, ,,,故选:A.【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.9、B【分析】利用已知条件证明△ADE≌△ADC(SAS),得到∠DEA=∠C,根据外角的性质可求的度数.【详解】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴∠DEA=∠C,∵,∠DEA=∠B +,∴;故选:B【点睛】本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE≌△ADC.10、C【分析】已知两边,则第三边的长度应是大于两边的差且小于两边的和,这样就可求出第三边长的范围.【详解】解:依题意得:11﹣7<x<7+11,即4<x<18,9cm适合.故选:C.【点睛】本题考查三角形三边关系,是重要考点,掌握相关知识是解题关键.二、填空题1、26【分析】根据负整数指数幂和零指数幂的计算法则求解即可.【详解】解:,故答案为:26.【点睛】本题主要考查了负整数指数幂和零指数幂,解题的关键在于能够熟练掌握相关计算法则.2、105°【分析】根据轴对称的性质,轴对称图形全等,则∠A=∠A′,∠B=∠B′,∠C=∠C′,再根据三角形内角和定理即可求得.【详解】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠C=∠C′=40°,∠A=∠A′=35°∴∠B=180°−35°−40°=105°.故答案为:105°.【点睛】本题考查了轴对称图形的性质,全等的性质,三角形内角和定理,理解轴对称图形的性质是解题的关键.3、π【分析】利用常量定义可得答案.【详解】解:公式S=πR2中常量是π,故答案为:π.【点睛】本题主要考查了常量,关键是掌握在一个变化的过程中,数值始终不变的量称为常量.4、15°【分析】根据平行线的性质和三角板的特殊角的度数解答即可.【详解】解:如图:∵ABCD,∴∠BAD=∠D=30°,∵∠BAE=45°,∴∠α=45°﹣30°=15°,故答案为:15°.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.5、【分析】根据题意直接由定义运算的顺序转化为整式的混合运算,进一步计算得出答案即可.【详解】解:2x@(-3x)
=2x(-3x)÷(-3x)2
=-6x2÷9x2
=.
故答案为:.【点睛】本题考查新定义运算下的整式的混合运算,理解规定的运算方法,把问题转化进行解决问题.三、解答题1、(1)40;(2)图见解析,135°;(3).【分析】(1)用A等级的人数除以所占的百分比即可;(2)计算出D等级的人数,用360°乘以B等级所占的百分比即可;(3)用女生人数除以总人数即可得出抽到女生的概率.【详解】解:(1)共抽取的学生数是:10÷25%=40(名).故答案为:40.(2)扇形统计图中B等级对应的圆心角的度数是360°135°.条形统计图如图:D等级的人数=40-15-10-10=5(3)∵A等级中共有10人,其中有4名女生,∴抽到女生的概率是.【点睛】本题考查了条形统计图、扇形统计图以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.2、①②③④作图见解析;⑤PQ;⑥QD;⑦QF;⑧PE【分析】由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.【详解】①②③④作图如图所示;⑤根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.【点睛】本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.3、(1)证明见解析;(2),理由见解析.【分析】(1)根据证明与全等,进而利用全等三角形的性质解答即可;(2)根据证明与全等,进而利用全等三角形的性质解答即可.【详解】证明:(1),,在与中,,,,,,即:.(2),理由:,,在与中,,,.,,.【点睛】本题主要考查三角形全等的证明,合理利用已知条件进行证明是此类问题的关键.4、相等,理由见解析【分析】先根据角平分线的定义得出,再由平行线的性质即可得出结论.【详解】解:相等.理由:∵是的角平分线,∴,∵,∴,∵,∴∴.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.5、(1)所挂物体的质量;弹簧的长度(2)y=2x+18,30cm.【分析】(1)利用自变量与因变量的定义分析得出答案;(2)利用表格中数据的变化进而得出答案.【详解】解:(1)所挂物体质量是自变量,弹簧长度是因变量; (2)由表格可得:当所挂物体重量为1千克时,弹簧长20厘米;当不挂重物时,弹簧长18厘米,物体每增加1kg,弹簧伸长2cm∴y=2x+18; 当所挂重物为6kg时,弹簧的长度为:y=12+18=30(cm).【点睛】考查了函数的表示方法,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.
相关试卷
这是一份2021-2022学年度北师大版七年级数学下册期末专项测评 A卷(含详解),共18页。试卷主要包含了下列图形为轴对称图形的是等内容,欢迎下载使用。
这是一份2021-2022学年度强化训练北师大版七年级数学下册期末测评试题 卷(Ⅱ)(含答案及详解),共17页。试卷主要包含了如图,图形中的的值是,下列事件为必然事件的是,一个袋中装有红等内容,欢迎下载使用。
这是一份2021-2022学年度北师大版七年级数学下册期末测评试题 卷(Ⅱ)(含答案详解),共20页。试卷主要包含了袋中装有10个黑球,下列图形是轴对称图形的是等内容,欢迎下载使用。