开学活动
搜索
    上传资料 赚现金

    2022年沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含答案及详细解析)

    2022年沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含答案及详细解析)第1页
    2022年沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含答案及详细解析)第2页
    2022年沪教版七年级数学第二学期第十五章平面直角坐标系专题训练试题(含答案及详细解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时作业

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时作业,共30页。试卷主要包含了若平面直角坐标系中的两点A,已知A,已知点A,点A的坐标为,则点A在等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )
    A.第四象限B.第三象限C.第二象限D.第一象限
    2、平面直角坐标系中,将点A(,)沿着x的正方向向右平移()个单位后得到B点,则下列结论:①B点的坐标为(,);②线段AB的长为3个单位长度;③线段AB所在的直线与x轴平行;④点M(,)可能在线段AB上;⑤点N(,)一定在线段AB上.其中正确的结论有( )
    A.2个B.3个C.4个D.5个
    3、点P(﹣1,2)关于y轴对称点的坐标是( ).
    A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)
    4、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则a+b的值是( )
    A.2B.-2C.4D.-4
    5、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是( )
    A.直线x=﹣1B.x轴C.y轴D.直线x=
    6、已知A(2,5),若B是x轴上的一动点,则A、B两点间的距离的最小值为( )
    A.2B.3C.3.5D.5
    7、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是( )
    A.(-3,2)B.(3,2)C.(-3,-2)D.(3,-2)
    8、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为( )
    A.2B.﹣2C.3D.﹣3
    9、点A的坐标为,则点A在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    10、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知点P(,)在x轴上,则_____.
    2、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对,例如:数2在第2行第1列,记它的位置为有序数对.按照这种方式,(1)位置为有序数对的数是______;(2)数位置为有序数对______.
    3、如图,等边三角形ABC,BC的高AD=4cm,点P为AD上一动点,E为AB边的中点,则BP+EP的最小值_________.
    4、已知点A(a,1)与点B(3,b)关于x轴对称,则a+b=_______.
    5、点到轴的距离为______,到轴的距离为______.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′.
    (1)根据要求在网格中画出相应图形;
    (2)写出△A′B′C′三个顶点的坐标.
    2、如图,在平面直角坐标系中,已知线段AB;
    (1)请在y轴上找到点C,使△ABC的周长最小,画出△ABC,并写出点C的坐标;
    (2)作出△ABC关于y轴对称的△A'B'C';
    (3)连接BB',AA'.求四边形AA'B'B的面积.
    3、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).
    (1)作出△ABC关于y轴的对称图形△A'B'C';
    (2)写出点A',B',C'的坐标;
    (3)在y轴上找一点P,使PA+PC的长最短.
    4、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
    (1)求证:△AOB≌△COD;
    (2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
    (3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
    5、如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).
    (1)在图中作出△ABC关于y轴对称的图形△A1B1C1;
    (2)写出点A1 ,B1 ,C1 的坐标.
    6、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
    (1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
    (2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2的坐标.
    7、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
    (1)请在如图所示的网格平面内作出平面直角坐标系.
    (2)请作出△ABC关于y轴对称的△A′B′C′.
    (3)求△ABC的面积 .
    8、已知A(-1,3),B(4,2),C(2,-1).
    (1)在平面直角坐标系中,画出△ABC及△ABC关于y轴的对称图形△A1B1C1;
    (2)P为x轴上一点,请在图中标出使△PAB的周长最小时的点P,并根据图象直接写出此时点P的坐标 .
    9、在平面直角坐标系xy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).
    (1)如图1,在BC上找一点P,使∠BAP=45°;
    (2)如图2,作△ABC的高BH.
    10、如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且∠ACB=90°.
    (1)图中与∠ABC相等的角是 ;
    (2)若AC=3,BC=4,AB=5,求点C的坐标.
    -参考答案-
    一、单选题
    1、A
    【分析】
    直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.
    【详解】
    ∵点P(m,1)在第二象限内,
    ∴m<0,
    ∴1﹣m>0,
    则点Q(1﹣m,﹣1)在第四象限.
    故选:A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    2、B
    【分析】
    根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断①,根据平移的性质即可求得的长,进而判断②,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断③,根据纵坐标的特点即可判断④⑤
    【详解】
    解:∵点A(,)沿着x的正方向向右平移()个单位后得到B点,
    ∴B点的坐标为(,);
    故①正确;
    则线段AB的长为;
    故②不正确;
    ∵A(,),B(,);纵坐标相等,即点A,B到x轴的距离相等
    ∴线段AB所在的直线与x轴平行;
    故③正确
    若点M(,)在线段AB上;
    则,即,不存在实数
    故点M(,)不在线段AB上;
    故④不正确
    同理点N(,)在线段AB上;
    故⑤正确
    综上所述,正确的有①③⑤,共3个
    故选B
    【点睛】
    本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.
    3、A
    【分析】
    平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.
    【详解】
    解:∵点P(-1,2)关于y轴对称,
    ∴点P(-1,2)关于y轴对称的点的坐标是(1,2).
    故选:A.
    【点睛】
    本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.
    4、A
    【分析】
    直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.
    【详解】
    解:依题意可得a=-1,b=3
    ∴a+b=2
    故选A.
    【点睛】
    此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
    5、B
    【分析】
    根据轴对称的性质判断即可.
    【详解】
    解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴
    故选:B.
    【点睛】
    本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.
    6、D
    【分析】
    当AB⊥x轴时,AB距离最小,最小值即为点A纵坐标的绝对值,据此可得.
    【详解】
    解:∵A(﹣2,5),且点B是x轴上的一点,
    ∵当AB⊥x轴时,AB距离最小,即B点(-2,0)
    ∴A、B两点间的距离的最小值5.
    故选:D.
    【点睛】
    本题考查了直线外一点与直线上各点连接的所有线段中,垂线段最短;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
    7、D
    【分析】
    由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.
    【详解】
    解:∵“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),
    ∴建立平面直角坐标系,如图所示:
    ∴“东风标致”的坐标是(3,2);
    故选:D.
    【点睛】
    本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
    8、C
    【分析】
    根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.
    【详解】
    解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,
    ∴a=3,
    故选:C.
    【点睛】
    此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.
    9、A
    【分析】
    应先判断出点的横纵坐标的符号,进而判断点所在的象限.
    【详解】
    解:由题意,
    ∵点A的坐标为,
    ∴点A在第一象限;
    故选:A
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    10、B
    【分析】
    设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.
    【详解】
    解:∵设内任一点A(a,b)在第三象限内,
    ∴a<0,b<0,
    ∵点A关于x轴对称后的点B(a,-b),
    ∴﹣b>0,
    ∴点B(a,-b)所在的象限是第二象限,即在第二象限.
    故选:B.
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
    二、填空题
    1、
    【分析】
    根据x轴上点的纵坐标为0求解即可.
    【详解】
    解:∵点P在x轴上,
    ∴a-3=0,即a=3,
    故答案为:3.
    【点睛】
    本题主要考查了点的坐标,解题的关键是掌握平面直角坐标系内各象限、坐标轴上点的坐标符号特点.
    2、 (9,6)
    【分析】
    根据题意,找出题目的规律,中含有4个数,中含有9个数,中含有16个数,……,中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.
    【详解】
    解:根据题意,如图:
    ∴有序数对的数是;
    由图可知,中含有4个数,中含有9个数,中含有16个数;
    ……
    ∴中含有64个数,且奇数行都是从左边第一个数开始,
    ∵,
    ∴是第九行的第6个数;
    ∴数位置为有序数对是(9,6).
    故答案为:;(9,6).
    【点睛】
    此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.
    3、4cm
    【分析】
    先连接,再根据,将转化为,最后根据两点之间线段最短,求得的长,即为的最小值.
    【详解】
    解:连接,
    等边中,是边上的高,
    是边上的中线,即垂直平分

    当、、三点共线时,,
    等边中,是边的中点,

    的最小值为4,
    故答案为:4cm.
    【点睛】
    本题主要考查了等边三角形的轴对称性质和勾股定理的应用等知识,解题的关键是熟练掌握和运用等边三角形的性质以及轴对称的性质,解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.
    4、2
    【分析】
    根据两点关于x轴对称得到a=3,b=-1,代入计算即可.
    【详解】
    解:∵点A(a,1)与点B(3,b)关于x轴对称,
    ∴a=3,b=-1,
    ∴a+b=2.
    故答案为:2.
    【点睛】
    此题考查了轴对称的性质—关于x轴对称:关于x轴对称的两点的横坐标相等,纵坐标互为相反数,熟记性质是解题关键.
    5、5 2
    【分析】
    根据横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离即可求解.
    【详解】
    解:点到轴的距离为,到轴的距离为2.
    故答案为:5;2
    【点睛】
    本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.
    三、解答题
    1、(1)见解析;(2),,
    【分析】
    (1)利用平移变换的性质分别作出,,的对应点,,即可.
    (2)根据平面直角坐标系写出,,的坐标.
    【详解】
    解:(1)如图,△即为所求,
    (2)根据平面直角坐标系可得:,,.
    【点睛】
    本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.
    2、(1)见详解,点C 的坐标为(0,4);(2)见详解;(3)16
    【分析】
    (1)作B点关于y轴的对称点 连接与y轴的交点即为C点,即可求出点C的坐标;
    (2)根据网格画出△ABC关于y轴对称的△A'B'C'即可;
    (3)根据梯形面积公式即可求四边形AA'B'B的面积.
    【详解】
    解:(1)所要求作△ABC 如图所示,点C的坐标为(0,4);
    (2)△A'B'C'即为所求;
    (3)点A,B,A',B'的坐标分别为:(﹣3,1)、(﹣1,5)、(3,1)、(1,5);
    ∴四边形AA'B'B的面积为:
    = (2+6)×4
    =16.
    【点睛】
    本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称的性质.
    3、(1)见解析;(2)A′(1,5),B′(1,0),C′(4,3);(3)见解析
    【分析】
    (1)分别作出点A、B、C关于y轴的对称点,再收尾顺次连接即可得;
    (2)根据△A'B'C'各顶点的位置,写出其坐标即可;
    (3)连接PC,则PC=PC′,根据两点之间线段最短,可得PA+PC的值最小.
    【详解】
    解:(1)如图所示,△A′B′C′为所求作;
    (2)由图可得,A′(1,5),B′(1,0),C′(4,3);
    (3)如图所示,连接AC′,交y轴于点P,则点P即为所求作.
    【点睛】
    本题主要考查了利用轴对称变换作图以及最短距离的问题,解题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,运用轴对称变换来解决,多数情况要作点关于某直线的对称点.关于y轴对称的点,纵坐标相同,横坐标互为相反数.
    4、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)根据即可证明;
    (2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
    (3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
    【详解】
    (1)轴于点,轴于点,

    ,,
    ,,

    (2)
    如图2,过点作轴,交于点,


    轴,



    ,,,

    在与中,


    ,即点为中点;
    (3)
    如图3,延长到,使,连接,,延长交于点,
    ,,,

    ,,





    ,,




    ,,

    ,即.
    【点睛】
    本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
    5、(1)见解析;(2)(1,5),(3,0),(4,3)
    【分析】
    (1)根据对称性即可在图中作出△ABC关于y轴对称的图形△A1B1C1;
    (2)结合(1)即可写出点A1,B1,C1的坐标.
    【详解】
    解:(1)如图,△A1B1C1即为所求;
    (2)A1(1,5),B1(3,0),C1(4,3);
    故答案为:(1,5),(3,0),(4,3).
    【点睛】
    本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称性质.关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标相同.
    6、(1)画图见解析,;(2)画图见解析,(-2,2)
    【分析】
    (1)根据关于y轴的点的坐标特征分别作出△ABC的各个顶点关于x轴的对称点,然后连线作图即可;
    (2)利用网格特点和旋转的性质画出点A2、B、C2的坐标,然后描点即可得到△A2BC2,然后写出点A2的坐标.
    【详解】
    解:(1)如图,即为所求;
    ∵是A(2,4)关于x轴对称的点,
    ∴根据关于x轴对称的点的坐标特征可知:;
    (2)如图,即为所求,
    ∴的坐标为(-2,2).
    【点睛】
    本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键.
    7、
    (1)见解析;
    (2)见解析;
    (3)4.
    【分析】
    (1)根据点坐标直接确定即可;
    (2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△A′B′C′;
    (3)利用面积加减法计算.
    (1)
    如图所示:
    (2)
    解:如图所示:
    (3)
    解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,
    故答案为:4.
    【点睛】
    此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.
    8、(1)见解析;(2)见解析,
    【分析】
    (1)根据关于y轴对称点的坐标特点得到△A1B1C1各顶点的坐标,然后描出各点,然后顺次连接即可;
    (2)作点A关于x轴的对称点A1,连接A1B交x轴与点P.
    【详解】
    解:(1)如图△ABC及△A1B1C1即为所求作的图形;
    (2)如图点P即为所求作的点,此时点P的坐标(2,0) .
    【点睛】
    本题主要考查的是轴对称变换,掌握关于轴对称点的坐标特点是解题的关键.
    9、(1)见解析;(2)见解析
    【分析】
    (1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;
    (2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.
    【详解】
    解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求,
    理由如下:
    根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,
    ∴△ABM≌△BNQ,
    ∴AB=BN,∠ABM=∠BNQ,
    ∴∠BAP=∠BNP,
    ∵∠NBQ+∠BNQ=90°,
    ∴∠ABM +∠BNQ=90°,
    ∴∠ABN=90°,
    ∴∠BAP=∠BNP=45°;
    (2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.
    理由如下:
    过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,
    ∴△ACD≌△QBG,
    ∴∠ACD=∠QBG,
    ∵∠QBG+∠BQG=90°,
    ∴∠ACD +∠BQG=90°,
    ∴∠CHQ=90°,
    ∴BH⊥AC,即BH为△ABC的高.
    【点睛】
    本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
    10、(1)∠ACO;(2)点C的坐标为(0,).
    【分析】
    (1)由同角的余角相等,可得到∠ABC=∠ACO;
    (2)利用面积法可求得CO的长,进而得到点C的坐标.
    【详解】
    解:(1)∵OC⊥AB,∠ACB=90°.
    ∴∠ABC+∠BCO=∠ACO+∠BCO=90°,
    ∴∠ABC=∠ACO;
    故答案为:∠ACO;
    (2)∵AC=3,BC=4,AB=5,
    ∴三角形ABC是直角三角形,∠ACB=90°
    ABCO=ACBC,即CO==,
    ∴点C的坐标为(0,).
    【点睛】
    本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.

    相关试卷

    初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试课时训练:

    这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试课时训练,共28页。试卷主要包含了点在第四象限,则点在第几象限,已知点A等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题,共31页。试卷主要包含了在平面直角坐标系中,点,点P在第二象限内,P点到x,点M,点在第四象限,则点在第几象限等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共28页。试卷主要包含了若点在第三象限,则点在.,在平面直角坐标系中,点A等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map