初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习
展开
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共31页。试卷主要包含了已知A,平面直角坐标系中,点P,点P关于y轴对称点的坐标是.,若点在第三象限,则点在.等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、平面直角坐标系内一点P(﹣3,2)关于原点对称的点的坐标是( )
A.(2,﹣3) B.(3,﹣2) C.(﹣2,﹣3) D.(2,3)
2、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )
A.离北京市100千米 B.在河北省
C.在怀来县北方 D.东经114.8°,北纬40.8°
3、在平面直角坐标系中,已知点P(5,−5),则点P在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4、点向上平移2个单位后与点关于y轴对称,则( ).
A.1 B. C. D.
5、若点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为( )
A.(1,-2) B.(2,1) C.(-2,1) D.(2,-1)
6、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是( )
A.﹣1 B.0 C.1 D.2
7、平面直角坐标系中,点P(,)和点Q(,)关于轴对称,则的值是( )
A. B. C. D.
8、点P(﹣1,2)关于y轴对称点的坐标是( ).
A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)
9、若点在第三象限,则点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、点P(﹣2,b)与点Q(a,3)关于x轴对称,则a+b的值为( )
A.5 B.﹣5 C.1 D.﹣1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点P(,)在x轴上,则_____.
2、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 ___.
3、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对,例如:数2在第2行第1列,记它的位置为有序数对.按照这种方式,(1)位置为有序数对的数是______;(2)数位置为有序数对______.
4、在平面直角坐标系中点M(2,﹣4)关于原点对称的点的坐标为 _____.
5、在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则a-b=________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0).
(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;
(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并写出点E的坐标;
(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,
①画出线段MN并写出点M的坐标;
②直接写出线段MN与线段CD的位置关系.
2、如图,在平面直角坐标系中,AO=CO=6,AC交y轴于点B,∠BAO=30°,CO的垂直平分线过点B交x轴于点E.
(1)求AE的长;
(2)动点N从E出发,以1个单位/秒的速度沿射线EC方向运动,过N作x轴的平行线交直线OC于G,交直线BE于P,设GP的长为d,运动时间为t秒,请用含量t的式子表示d,并直接写出t的取值范围;
(3)在(2)的条件下,动点M从A以1个单位/秒的速度沿射线AE运动,且点M与点N同时出发,MN与射线OC相交于点K,是否存在某一运动时间t,使得=2,若存在,请求出t值;若不存在,请说明理由.
3、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的伴随图形.
例如:点P(2,1)的伴随图形是点P'(-2,-1).
(1)点Q(-3,-2)的伴随图形点Q'的坐标为 ;
(2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).
①当t=-1,且直线m与y轴平行时,点A的伴随图形点A'的坐标为 ;
②当直线m经过原点时,若△ABC的伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.
4、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2的坐标.
5、格点三角形(顶点是网格线的交点的三角形)△ABC在平面直角坐标系中的位置如图所示.
(1)A点坐标为 ;A点关于y轴对称的对称点A1坐标为 .
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)请直接写出△A1B1C1的面积.
6、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2).
(1)画出△ABC关于原点O对称的△A1B1C1.
(2)求△A1B1C1的面积.
7、如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且∠ACB=90°.
(1)图中与∠ABC相等的角是 ;
(2)若AC=3,BC=4,AB=5,求点C的坐标.
8、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:
(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.
(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.
9、如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.
实验与探究:(1)观察图,易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点、的位置,并写出他们的坐标: , ;
归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为 (不必证明);
运用与拓广:(3)已知两点D(1,﹣3)、E(﹣3,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.
10、如图,在平面直角坐标系中,三个顶点的坐标为、、.
(1)在图中作出关于轴的对称图形;
(2)请直接写出点的坐标___________;
(3)在轴上画出一点使的值最小.
-参考答案-
一、单选题
1、B
【分析】
根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(﹣x,﹣y),进而得出答案.
【详解】
解答:解:点P(﹣3,2)关于原点对称的点的坐标是:(3,﹣2).
故选:B.
【点睛】
此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.
2、D
【分析】
若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.
【详解】
离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,
东经114.8°,北纬40.8°为准确的位置信息.
故选:D.
【点睛】
本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.
3、D
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4、D
【分析】
利用平移及关于y轴对称点的性质即可求解.
【详解】
解:把向上平移2个单位后得到点 ,
∵点与点关于y轴对称,
∴ , ,
∴ ,
∴,
故选:D.
【点睛】
本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.
5、D
【分析】
先判断出点的横、纵坐标的符号,再根据点到轴、轴的距离即可得.
【详解】
解:点在第四象限,
点的横坐标为正数,纵坐标为负数,
点到轴的距离为1,到轴的距离为2,
点的纵坐标为,横坐标为2,
即,
故选:D.
【点睛】
本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.
6、C
【分析】
由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.
【详解】
∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),
∴平移方法为向右平移2个单位,
∴x=﹣2,y=3,
∴x+y=1,
故选:C.
【点睛】
本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.
7、A
【分析】
根据题意直接利用关于x轴对称点的性质得出a,b的值,进而代入计即可得出答案.
【详解】
解:∵点P(,)和点Q(,)关于轴对称,
∴,
∴.
故选:A.
【点睛】
本题考查关于x轴的对称点的坐标特点,注意掌握关于x轴的对称点的坐标特点为横坐标不变,纵坐标互为相反数.
8、A
【分析】
平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.
【详解】
解:∵点P(-1,2)关于y轴对称,
∴点P(-1,2)关于y轴对称的点的坐标是(1,2).
故选:A.
【点睛】
本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.
9、A
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
10、B
【分析】
根据关于x轴对称的两点的坐标特征:横坐标相同,纵坐标互为相反数,即可求得a与b的值,从而求得a+b的值.
【详解】
∵点P(﹣2,b)与点Q(a,3)关于x轴对称
∴a=−2,b=−3
∴a+b=−2+(−3)=−5
故选:B
【点睛】
本题考查了关于x轴对称的两点的坐标特征,掌握这个特征是关键.
二、填空题
1、
【分析】
根据x轴上点的纵坐标为0求解即可.
【详解】
解:∵点P在x轴上,
∴a-3=0,即a=3,
故答案为:3.
【点睛】
本题主要考查了点的坐标,解题的关键是掌握平面直角坐标系内各象限、坐标轴上点的坐标符号特点.
2、(1,﹣1)
【分析】
先利用勾股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标.
【详解】
∵点A的坐标为(1,0),
∴OA=1,
∵四边形OABC是正方形,
∴∠OAB=90°,AB=OA=1,
∴B(1,1),
连接OB,如图:
由勾股定理得:OB=,
由旋转的性质得:OB=OB1=OB2=OB3=…=,
∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,
相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,
∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,
发现是8次一循环,则2022÷8=252…6,
∴点B2022的坐标为(1,﹣1),
故答案为:(1,﹣1).
【点睛】
本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键.
3、 (9,6)
【分析】
根据题意,找出题目的规律,中含有4个数,中含有9个数,中含有16个数,……,中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.
【详解】
解:根据题意,如图:
∴有序数对的数是;
由图可知,中含有4个数,中含有9个数,中含有16个数;
……
∴中含有64个数,且奇数行都是从左边第一个数开始,
∵,
∴是第九行的第6个数;
∴数位置为有序数对是(9,6).
故答案为:;(9,6).
【点睛】
此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.
4、
【分析】
根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解.
【详解】
解:点M(2,﹣4)关于原点对称的点的坐标为
故答案为:
【点睛】
本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键.
5、-1
【分析】
直接利用关于原点对称点的性质得出a,b的值,进而得出答案.
【详解】
解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,
∴a=﹣4,b=-3,
则a-b=-4+3=-1.
故答案为:﹣1.
【点睛】
此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.
三、解答题
1、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)①作图见解析,点M的坐标为(1,-5);②MN∥CD.
【分析】
(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;
(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;
(3)①分别作出A,B的对应点M,N,连接即可;
②由平行线的传递性可得答案.
【详解】
解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);
(2)如图所示,线段AE即为所求,点E的坐标为(3,3);
(3)①如图所示,线段MN即为所求,点M的坐标为(1,-5);
②∵线段MN与线段AB关于原点成中心对称,
∴MN∥AB,
∵线段CD是由线段AB平移得到的,
∴CD∥AB,
∴MN∥CD.
【点睛】
本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题.
2、(1)12;(2);(3)当或时,使得.
【分析】
(1)由OA=OC=6,∠BAO=30°,得到∠OAC=∠OCA=30°,则∠COE=∠OAC+∠OCA=60°,再由BE是线段OC的垂直平分线平分线,得到OE=CE,则△COE是等边三角形,由此即可得到答案;
(2)分三种情况:当直线PN在H点下方时(包括H点),当直线PN在H点上方,且在C点下方时(包括C点),当直线PN在C点上方时,三种情况讨论求解即可;
(3)分N在EC上和EC的延长线上两种情况,构造全等三角形求解即可.
【详解】
解:(1)∵OA=OC=6,∠BAO=30°,
∴∠OAC=∠OCA=30°,
∴∠COE=∠OAC+∠OCA=60°,
∵BE是线段OC的垂直平分线平分线,
∴OE=CE,
∴△COE是等边三角形,
∴OE=OC=AO=6,
∴AE=AO+OE=12;
(2)如图1所示,过点C作CK⊥x轴于K,设OC与BE的交点为H,当直线PN在H点下方时(包括H点),
∵BE是线段OC的垂直平分线,
∴∠CEP=∠OEP,
∵PN∥OE,
∴∠NPE=∠OEP,∠CGN=∠COE=60°,∠CNG=∠CEO=60°,
∴∠NPE=∠NEP,△CGN是等边三角形,
∴NP=NE=t,NG=CN=CE-NE=6-t,
∴PG=d=NG-NP=6-t-t=6-2t,
∵当直线PN刚好经过H点时,此时CH=CN=3,
即当t=3时,直线PN经过H点,
∴当直线PN在H点下方或经过H点时,d=6-2t(0≤t≤3);
如图2所示,当直线PN在H点上方,且在C点下方时(包括C点),
同理可证NP=NE=t,NG=CN=CE-CN=6-t,
∴PG=d=NP-NG=t-(6-t)=2t-6(3<t≤6);
如图3所示,当直线PN在C点上方时
同理可证NP=NE=t,NG=CN=EN-CE=t-6,
∴PG=d=NP+NG=t+t-6=2t-6(t>6),
∴综上所述, ;
(3)如图3-1所示,当N在CE上时,过点N作NR∥x轴交OC于R,
同(2)可证△CRN是等边三角形,
∴RN=CN=CR,
∵M、N运动的速度相同,
∴AM=NE,
又∵AO=EC,
∴MO=NR,
∵NR∥MO,
∴∠RNK=∠OMK,∠NRK=∠MOK,
∴△MOK≌△NRK(ASA),
∴OK=RK,OM=RN,
∵,
∴,
∵,
∴,即,
解得;
如图3-2所示,当C在EC的延长线上时,
同理可证,,
∵,
解得,
∴综上所述,当或时,使得.
【点睛】
本题主要考查了等边三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,坐标与图形,三角形外角的性质,全等三角形的性质与判定,解题的关键在于能够利用数形结合的思想进行求解.
3、
(1)(3,2)
(2)①(3,-1);②-1<t<1或2<t<4
【分析】
(1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;
(2)①时,点坐标为,直线为,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;②由题意知直线为直线,、、三点的轴,的伴随图形点坐标依次表示为:,,,由题意可得,或解出的取值范围即可.
(1)
解:由题意知沿轴翻折得点坐标为;
沿轴翻折得点坐标为
故答案为:.
(2)
①解:.,点坐标为,直线为,
沿轴翻折得点坐标为
沿直线翻折得点坐标为即为
故答案为:
②解:∵直线经过原点
∴直线为
∴、、的伴随图形点坐标先沿轴翻折,点坐标依次为,,;
然后沿直线翻折,点坐标依次表示为:,,
由题意可知:或
解得:或
【点睛】
本题考查了直角坐标系中的点对称,几何图形翻折.解题的关键在于正确的将翻折后的点坐标表示出来.
4、(1)画图见解析,;(2)画图见解析,(-2,2)
【分析】
(1)根据关于y轴的点的坐标特征分别作出△ABC的各个顶点关于x轴的对称点,然后连线作图即可;
(2)利用网格特点和旋转的性质画出点A2、B、C2的坐标,然后描点即可得到△A2BC2,然后写出点A2的坐标.
【详解】
解:(1)如图,即为所求;
∵是A(2,4)关于x轴对称的点,
∴根据关于x轴对称的点的坐标特征可知:;
(2)如图,即为所求,
∴的坐标为(-2,2).
【点睛】
本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键.
5、(1)(-2,3);(2,3);(2)见解析;(3)
【分析】
(1)根据平面直角坐标系可得A点坐标,再根据关于y轴对称的点的坐标特点可得A1坐标;
(2)首先确定A、B、C三点坐标,再连接即可;
(3)根据割补求解可得答案.
【详解】
解:(1)A点坐标为 (-2,3);
A点关于y轴对称的对称点A1坐标为 (2,3).
故答案为:(-2,3);(2,3);
(2)如图所示△A1B1C1;
(3)△A1B1C1的面积:2×2-×1×2-×1×2-×1×1=.
【点睛】
本题主要考查了作图-轴对称变换,关键是掌握图形都是由点组成的,作轴对称图形,就是寻找特殊点的对称点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.
6、(1)图形见解析;(2)5
【分析】
(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;
(2)利用割补法求△A1B1C1面积.
【详解】
(1)∵
∴△ABC关于原点O对称的△A1B1C1位置如图:
(2)
【点睛】
此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点.
7、(1)∠ACO;(2)点C的坐标为(0,).
【分析】
(1)由同角的余角相等,可得到∠ABC=∠ACO;
(2)利用面积法可求得CO的长,进而得到点C的坐标.
【详解】
解:(1)∵OC⊥AB,∠ACB=90°.
∴∠ABC+∠BCO=∠ACO+∠BCO=90°,
∴∠ABC=∠ACO;
故答案为:∠ACO;
(2)∵AC=3,BC=4,AB=5,
∴三角形ABC是直角三角形,∠ACB=90°
ABCO=ACBC,即CO==,
∴点C的坐标为(0,).
【点睛】
本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.
8、(1)6,30°;(2)见解析,30
【分析】
(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.
【详解】
(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.
答案:6,30°
(2)如图所示:
∵A(5,30),B(12,120),
∴∠BOX=120°,∠AOX=30°,
∴∠AOB=90°,
∵OA=5,OB=12,
∴△AOB的面积为OA·OB=30.
【点睛】
本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.
9、(1)(3,5),(5,﹣2);(2)(b,a);(3)Q(-3,-3)
【分析】
(1)根据点关于直线对称的定义,作出B、C两点关于直线l的对称点B′、C′,写出坐标即可.
(2)通过观察即可得出对称结论.
(3)作点E关于直线l的对称点E′(﹣4,﹣3),连接DE′交直线l于Q,此时QE+QD的值最小.
【详解】
解:(1)B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置如图所示.
B′(3,5),C′(5,﹣2).
故答案为B′(3,5),C′(5,﹣2).
(2)由(1)可知点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为P′(b,a).
(3)作点E关于直线l的对称点E′(﹣4,﹣3),连接DE′交直线l于Q,
∵两点之间线段最短
∴此时QE+QD的值最小,
由图象可知Q点坐标为(-3,-3).
【点睛】
本题考查了坐标系中的轴对称变化,点关于第一、三象限角平分线对称的点的坐标为;关于第二、四象限角平分线对称的点的坐标为.
10、(1)见解析;(2);(3)见解析
【分析】
(1)根据题意得:点、、关于轴的对称的的对应点分别为、、,再顺次连接,即可求解;
(2)根据和关于轴的对称图形,即可求解;
(3)作点 关于 轴的对称点 ,连接 交 轴于点 ,根据点 与 关于轴对称,可得,即可求解.
【详解】
解:根据题意得:点、、关于轴的对称的的对应点分别为、、,画出图形,如图所示:
(2)点的坐标为;
(3)如图,作点关于 轴的对称点 ,连接 交 轴于点 ,则点即为所求,
∵点 与 关于轴对称,
∴ ,
∴,
即当点 三点共线时,的值最小.
【点睛】
本题主要考查了坐标与图形,图形变换——轴对称,线段最短问题,熟练掌握若两点关于y轴对称,则横坐标互为相反数,纵坐标不变;若两点关于x轴对称,则横坐标不变,纵坐标互为相反数;两点间线段最短是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题,共27页。试卷主要包含了已知点在一,若点P,如果点P,已知A等内容,欢迎下载使用。
这是一份初中数学第十五章 平面直角坐标系综合与测试课后作业题,共34页。试卷主要包含了点M,点P,点在,已知点A等内容,欢迎下载使用。
这是一份2021学年第十五章 平面直角坐标系综合与测试同步训练题