搜索
    上传资料 赚现金
    英语朗读宝

    2022年沪教版七年级数学第二学期第十五章平面直角坐标系单元测试试卷(无超纲带解析)

    2022年沪教版七年级数学第二学期第十五章平面直角坐标系单元测试试卷(无超纲带解析)第1页
    2022年沪教版七年级数学第二学期第十五章平面直角坐标系单元测试试卷(无超纲带解析)第2页
    2022年沪教版七年级数学第二学期第十五章平面直角坐标系单元测试试卷(无超纲带解析)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十五章 平面直角坐标系综合与测试单元测试巩固练习

    展开

    这是一份2021学年第十五章 平面直角坐标系综合与测试单元测试巩固练习,共31页。试卷主要包含了如图,A,在平面直角坐标系中,点P,在平面直角坐标系中,点,若点P等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系单元测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
    A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)
    2、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    3、若点在第三象限,则点在( ).
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    4、如图,A、B两点的坐标分别为A(-2,-2)、B(4,-2),则点C的坐标为( )

    A.(2,2) B.(0,0) C.(0,2) D.(4,5)
    5、在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是 ( )
    A.(3,﹣2) B.(2,﹣3) C.(﹣3,2) D.(﹣2,﹣3)
    6、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )
    A.( - 1, - 3) B.( - 1,3) C.(1, - 3) D.(3,1)
    7、若点P(2,b)在第四象限内,则点Q(b,-2)所在象限是( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    8、在平面直角坐标系中,已知点P(5,−5),则点P在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    9、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )
    A. B. C. D.
    10、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
    A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知点与点关于轴对称,则________.
    2、已知点A(a,1)与点B(3,b)关于x轴对称,则a+b=_______.
    3、若,其中b,c为常数,则点P(b,c)关于x轴的对称点的坐标为____.
    4、有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3)(7,3)(4,1)(4,4)请你把这个英文单词写出来或者翻译中文为______.

    5、若点A在第二象限,且A点到x轴的距离为3,到y轴的距离为4,则点A的坐为_______.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:
    (1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;
    (2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;
    (3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由.

    2、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).
    (1)请在图中画出ABC;
    (2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;
    (3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 .

    3、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4).
    (1)画出线段AB关于y轴对称的线段A1B1,再画出线段A1B1关于x轴对称的线段A2B2;
    (2)点A2的坐标为    ;
    (3)若此平面直角坐标系中有一点M(a,b),点M关于y轴对称的对称点M1,点M1关于x轴对称的对称点M2,则点M2的坐标为    .

    4、如图,在平面直角坐标系中,已知线段AB;
    (1)请在y轴上找到点C,使△ABC的周长最小,画出△ABC,并写出点C的坐标;
    (2)作出△ABC关于y轴对称的△A'B'C';
    (3)连接BB',AA'.求四边形AA'B'B的面积.

    5、如图,在平面直角坐标系中,AO=CO=6,AC交y轴于点B,∠BAO=30°,CO的垂直平分线过点B交x轴于点E.
    (1)求AE的长;
    (2)动点N从E出发,以1个单位/秒的速度沿射线EC方向运动,过N作x轴的平行线交直线OC于G,交直线BE于P,设GP的长为d,运动时间为t秒,请用含量t的式子表示d,并直接写出t的取值范围;
    (3)在(2)的条件下,动点M从A以1个单位/秒的速度沿射线AE运动,且点M与点N同时出发,MN与射线OC相交于点K,是否存在某一运动时间t,使得=2,若存在,请求出t值;若不存在,请说明理由.

    6、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
    已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).

    (1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
    (2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
    (3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
    7、如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.
    (1)画出△ABC关于直线MN对称的.
    (2)若B为坐标原点,请写出、、的坐标,并直接写出的长度..
    (3)如图2,A,C是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)

    8、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:
    (1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.
    (2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.

    9、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且
    (1)求证:点A为线段BC的中点.
    (2)求点D的坐标.

    10、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点A的坐标为(1,-4).

    (1)△A1B1C1是△ABC关于y轴的对称图形,则点A的对称点A1的坐标是_______,并在图中画出△A1B1C1.
    (2)将△ABC绕原点逆时针旋转90°得到△A2B2C2,则A点的对应点A2的坐标是______,并在图中画出△A2B2C2 .

    -参考答案-
    一、单选题
    1、C
    【分析】
    根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.
    【详解】
    解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,
    ∴点P的横坐标是-3,纵坐标是4,
    ∴点P的坐标为(-3,4).
    故选C.
    【点睛】
    本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
    2、D
    【分析】
    由题意直接根据各象限内点坐标特征进行分析即可得出答案.
    【详解】
    ∵点A(x,5)在第二象限,
    ∴x<0,
    ∴﹣x>0,
    ∴点B(﹣x,﹣5)在四象限.
    故选:D.
    【点睛】
    本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    3、A
    【分析】
    根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
    【详解】
    ∵点P(m,n)在第三象限,
    ∴m<0,n<0,
    ∴-m>0,-n>0,
    ∴点在第一象限.
    故选:A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    4、B
    【分析】
    根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.
    【详解】
    解:∵A点坐标为(-2,-2),B点坐标为(4,-2),
    ∴可以建立如下图所示平面直角坐标系,
    ∴点C的坐标为(0,0),
    故选B.

    【点睛】
    本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.
    5、D
    【分析】
    根据点关于x轴对称,横坐标不变,纵坐标变为相反数解答即可.
    【详解】
    解:点P(﹣2,3)关于x轴对称的点的坐标是(﹣2,﹣3).
    故选:D
    【点睛】
    本题考查了直角坐标系中关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.
    6、A
    【分析】
    由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可.
    【详解】
    解:∵两个点关于原点对称时,它们的坐标符号相反,
    ∴点关于原点对称的点的坐标是.
    故选:A.
    【点睛】
    题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律.
    7、C
    【分析】
    根据点P(2,b)在第四象限内,确定的符号,即可求解.
    【详解】
    解:点P(2,b)在第四象限内,∴,
    所以,点Q(b,-2)所在象限是第三象限,
    故选:C.
    【点睛】
    本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.
    8、D
    【分析】
    根据各象限内点的坐标特征解答即可.
    【详解】
    解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.
    故选:D.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    9、C
    【分析】
    利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.
    【详解】
    解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,
    点B的横坐标是:33=6,纵坐标为:5+4=1,
    即(6,1).
    故选:C.
    【点睛】
    本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.
    10、A
    【分析】
    由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
    【详解】
    解:由题意可知BO=CO,
    ∵又AB=AC,
    ∴AO⊥BC,
    ∴点A在y轴上,
    ∴选项A符合题意,
    B选项三点共线,不能构成三角形,不符合题意;
    选项C、D都不在y轴上,不符合题意;
    故选:A.
    【点睛】
    本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
    二、填空题
    1、12
    【分析】
    根据关于轴对称的点,纵坐标相同,横坐标互为相反数分别求出、的值,然后代入代数式进行计算即可求解.
    【详解】
    解:点与点关于轴对称,
    ,,

    故答案为:.
    【点睛】
    本题考查了关于轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:关于轴对称的点,纵坐标相同,横坐标互为相反数.
    2、2
    【分析】
    根据两点关于x轴对称得到a=3,b=-1,代入计算即可.
    【详解】
    解:∵点A(a,1)与点B(3,b)关于x轴对称,
    ∴a=3,b=-1,
    ∴a+b=2.
    故答案为:2.
    【点睛】
    此题考查了轴对称的性质—关于x轴对称:关于x轴对称的两点的横坐标相等,纵坐标互为相反数,熟记性质是解题关键.
    3、(-1,6)
    【分析】
    先利用多项式的乘法展开再根据对应项系数相等确定出b、c的值,然后根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
    【详解】
    解:∵(x+2)(x-3)=x2-x-6,
    ∴b=-1,c=-6,
    ∴点P的坐标为(-1,-6),
    ∴点P(-1,-6)关于x轴对称点的坐标是(-1,6).
    故答案为:(-1,6).
    【点睛】
    本题考查了多项式的乘法,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
    (1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
    (2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
    (3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    4、学习
    【分析】
    根据每一个点的坐标确定其对应的位置,最后写出答案.
    【详解】
    解:有序数对(5,3),(6,3)(7,3)(4,1)(4,4)对应的字母分别为S、T、U、D、Y,
    组成的英文单词为study,中文为学习,
    故答案为:学习.
    【点睛】
    此题考查了有序数对,正确理解有序数对的定义,确定各数对对应的字母是解题的关键.
    5、
    【分析】
    先根据点在第二象限可得点的横坐标为负数、纵坐标为正数,再根据点到坐标轴的距离即可得.
    【详解】
    解:点在第二象限,
    点的横坐标为负数、纵坐标为正数,
    点到轴的距离为3,到轴的距离为4,
    点的横坐标为、纵坐标为3,
    即点的坐标为,
    故答案为:.
    【点睛】
    本题考查了点坐标、点到坐标轴的距离,熟练掌握四个象限内的点坐标的符号规律是解题关键.
    三、解答题
    1、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
    【分析】
    (1)分别作出A,B,C的对应点A1,B1,C1即可;
    (2)分别作出A,B,C的对应点A2,B2,C2即可;
    (3)根据轴对称的定义判断即可.
    【详解】
    解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);
    (2)如图,△A2B2C2即为所求,点A2的坐标(4,3);

    (3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
    【点睛】
    本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    2、(1)见解析;(2)见解析;(3)(a-5,-b)
    【分析】
    (1)结合直角坐标系,可找到三点的位置,顺次连接即可得出△ABC.
    (2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;
    (3)根据点的坐标平移规律可得结论.
    【详解】
    解:(1)如图,ABC即为所画.

    (2)如图,A1B1C1即为所画.
    (3)点P(a,b)向左平移5个单位后的坐标为(a-5,b),关于x轴对称手点的坐标为(a-5,-b).
    故答案为:(a-5,-b)
    【点睛】
    此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置.
    3、(1)见详解;(2)(1,2);(3)(-a,-b).
    【分析】
    (1)分别作出A、B二点关于y轴的对称点A1、B1,再分别作出A1、B1二点关于x轴的对称点A2、B2即可;
    (2)根据图示得出坐标即可;
    (3)根据轴对称的性质得出坐标即可.
    【详解】
    解:(1)如图所示:

    线段A1B1和线段A2B2即为所求;
    (2) 点A2的坐标为(1,2);
    (3)点M(a,b),关于y轴对称的对称点M1(-a,b),点M1关于x轴对称的对称点M2(-a,-b),故点M2的坐标为(-a,-b).
    【点睛】
    本题考查作图-轴对称变换,轴对称-最短问题,两点之间线段最短等知识,解题的关键是熟练掌握轴对称的概念,利用对称解决最短问题,属于中考常考题型.
    4、(1)见详解,点C 的坐标为(0,4);(2)见详解;(3)16
    【分析】
    (1)作B点关于y轴的对称点 连接与y轴的交点即为C点,即可求出点C的坐标;
    (2)根据网格画出△ABC关于y轴对称的△A'B'C'即可;
    (3)根据梯形面积公式即可求四边形AA'B'B的面积.
    【详解】
    解:(1)所要求作△ABC 如图所示,点C的坐标为(0,4);

    (2)△A'B'C'即为所求;
    (3)点A,B,A',B'的坐标分别为:(﹣3,1)、(﹣1,5)、(3,1)、(1,5);
    ∴四边形AA'B'B的面积为:
    = (2+6)×4
    =16.
    【点睛】
    本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称的性质.
    5、(1)12;(2);(3)当或时,使得.
    【分析】
    (1)由OA=OC=6,∠BAO=30°,得到∠OAC=∠OCA=30°,则∠COE=∠OAC+∠OCA=60°,再由BE是线段OC的垂直平分线平分线,得到OE=CE,则△COE是等边三角形,由此即可得到答案;
    (2)分三种情况:当直线PN在H点下方时(包括H点),当直线PN在H点上方,且在C点下方时(包括C点),当直线PN在C点上方时,三种情况讨论求解即可;
    (3)分N在EC上和EC的延长线上两种情况,构造全等三角形求解即可.
    【详解】
    解:(1)∵OA=OC=6,∠BAO=30°,
    ∴∠OAC=∠OCA=30°,
    ∴∠COE=∠OAC+∠OCA=60°,
    ∵BE是线段OC的垂直平分线平分线,
    ∴OE=CE,
    ∴△COE是等边三角形,
    ∴OE=OC=AO=6,
    ∴AE=AO+OE=12;
    (2)如图1所示,过点C作CK⊥x轴于K,设OC与BE的交点为H,当直线PN在H点下方时(包括H点),
    ∵BE是线段OC的垂直平分线,
    ∴∠CEP=∠OEP,
    ∵PN∥OE,
    ∴∠NPE=∠OEP,∠CGN=∠COE=60°,∠CNG=∠CEO=60°,
    ∴∠NPE=∠NEP,△CGN是等边三角形,
    ∴NP=NE=t,NG=CN=CE-NE=6-t,
    ∴PG=d=NG-NP=6-t-t=6-2t,
    ∵当直线PN刚好经过H点时,此时CH=CN=3,
    即当t=3时,直线PN经过H点,
    ∴当直线PN在H点下方或经过H点时,d=6-2t(0≤t≤3);

    如图2所示,当直线PN在H点上方,且在C点下方时(包括C点),
    同理可证NP=NE=t,NG=CN=CE-CN=6-t,
    ∴PG=d=NP-NG=t-(6-t)=2t-6(3<t≤6);

    如图3所示,当直线PN在C点上方时

    同理可证NP=NE=t,NG=CN=EN-CE=t-6,
    ∴PG=d=NP+NG=t+t-6=2t-6(t>6),
    ∴综上所述, ;
    (3)如图3-1所示,当N在CE上时,过点N作NR∥x轴交OC于R,
    同(2)可证△CRN是等边三角形,
    ∴RN=CN=CR,
    ∵M、N运动的速度相同,
    ∴AM=NE,
    又∵AO=EC,
    ∴MO=NR,
    ∵NR∥MO,
    ∴∠RNK=∠OMK,∠NRK=∠MOK,
    ∴△MOK≌△NRK(ASA),
    ∴OK=RK,OM=RN,
    ∵,
    ∴,
    ∵,
    ∴,即,
    解得;

    如图3-2所示,当C在EC的延长线上时,
    同理可证,,
    ∵,
    解得,
    ∴综上所述,当或时,使得.

    【点睛】
    本题主要考查了等边三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,坐标与图形,三角形外角的性质,全等三角形的性质与判定,解题的关键在于能够利用数形结合的思想进行求解.
    6、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
    【分析】
    (1)根据一次反射点和二次反射点的定义求解即可;
    (2)根据二次反射点的意义求解即可;
    (3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
    【详解】
    解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
    点A关于直线:x=2的二次反射点为(5,1)
    故答案为: (-1,1);(5,1).
    (2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,

    解得,
    故答案为: -2.
    (3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
    当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
    ∵当与点B重合时,=-2,
    ∴当<-2时,△与△BCD无公共点.
    当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
    ∵当与点D重合时,=1,
    ∴当>1时,△与△BCD无公共点.
    综上,若△与△BCD无公共点,的取值范围是<-2,或>1.

    【点睛】
    本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
    7、(1)画图见解析;(2),;(3)画图见解析
    【分析】
    (1)分别确定关于对称的对称点 再顺次连接从而可得答案;
    (2)根据在坐标系内的位置直接写其坐标与的长度即可;
    (3)先确定关于的对称点,再连接 交于 则 从而可得答案.
    【详解】
    解:(1)如图1,是所求作的三角形,

    (2)如图1,为坐标原点,


    (3)如图2,点即为所求作的点.

    【点睛】
    本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.
    8、(1)6,30°;(2)见解析,30
    【分析】
    (1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
    (2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.
    【详解】
    (1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.
    答案:6,30°
    (2)如图所示:

    ∵A(5,30),B(12,120),
    ∴∠BOX=120°,∠AOX=30°,
    ∴∠AOB=90°,
    ∵OA=5,OB=12,
    ∴△AOB的面积为OA·OB=30.
    【点睛】
    本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.
    9、(1)证明见解析,(2)(8,2).
    【分析】
    (1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;
    (2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.
    【详解】
    (1)证明:过点C作CQ⊥OA于Q,
    ∵点B的坐标是,点C的坐标为,
    ∴CQ=OB=4,
    ∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,
    ∴△CQA≌△BOA,
    ∴CA=AB,
    ∴点A为线段BC的中点.
    (2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,
    ∵,
    ∴∠CRB=∠DSB=∠CBD=90°,
    ∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,
    ∴∠CBR=∠SDB,
    ∵,
    ∴∠BCD=∠BDC=45°,
    ∴CB=DB,
    ∴△CRB≌△BSD,
    ∴CR=SB,RB=DS,
    ∵点B的坐标是,点C的坐标为,
    ∴CR=SB=6,RB=DS=8,
    ∴OS=SB-OB=2,
    点D的坐标为(8,2).

    【点睛】
    本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.
    10、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1).
    【分析】
    (1)根据网格结构,找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;
    (2)根据网格结构,找出点A、B、C绕点逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1(-1,-4);
    (2)如图所示,△A2B2C2即为所求作的三角形,点A2(4,1).
    故答案为:(4,1).

    【点睛】
    本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴.

    相关试卷

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共24页。试卷主要包含了在平面直角坐标系中,点A,若点P,点P关于y轴对称点的坐标是.等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测,共34页。试卷主要包含了如果点P,根据下列表述,能确定位置的是,若点P等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试综合训练题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试综合训练题,共31页。试卷主要包含了已知A,点P关于y轴对称点的坐标是.,如果点P,若平面直角坐标系中的两点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map