![2021-2022学年度冀教版七年级下册第六章二元一次方程组月考练习题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12716584/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版七年级下册第六章二元一次方程组月考练习题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12716584/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版七年级下册第六章二元一次方程组月考练习题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12716584/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试当堂达标检测题
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共20页。试卷主要包含了《孙子算经》记载,如图,9个大小等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、已知a,b满足方程组则的值为( )A. B.4 C. D.22、有下列方程:①xy=1;②2x=3y;③;④x2+y=3; ⑤;⑥ax2+2x+3y=0 (a=0),其中,二元一次方程有( )A.1个 B.2个 C.3个 D.4个3、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )A. B. C. D.4、《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x人,有y辆车,根据题意,所列方程组正确的是( )A. B. C. D.5、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )A. B.C. D.6、如果关于x和y的二元一次方程组的解中的x与y的值相等,则a的值为( )A.-2 B.-1 C.2 D.17、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )A.48 B.52 C.58 D.648、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )A.6台 B.7台 C.8台 D.9台9、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )A.1 B.﹣1 C.2 D.﹣310、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )A.1.2元 B.1.05元 C.0.95元 D.0.9元第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、若x2a﹣3+yb+2=3是二元一次方程,则a﹣b=__.2、已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=_____.3、在(1),(2),(3)这三组数值中,_______是方程x-3y=9的解,______是方程2x+y=4的解,_________是方程组的解.4、一个两位数,个位上的数字比十位上的数字大3,将个位数字与十位数字交换位置所得到的新两位数比原两位数的3倍少1,则原两位数为_____.5、已知二元一次方程,用含的代数式示,则________.三、解答题(5小题,每小题10分,共计50分)1、下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:.解:①,得③,第一步,②③,得,第二步,.第三步,将代入①,得.第四步,所以,原方程组的解为.第五步.填空:(1)这种求解二元一次方程组的方法叫做______.、代入消元法、加减消元法(2)第______步开始出现错误,具体错误是______;(3)直接写出该方程组的正确解:______.2、目前,新型冠状病毒在我国虽可控可防,但不可松懈,某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液共400瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶.(1)如果购买这两种消毒液共7500元,求甲、乙两种消毒液各购买多少瓶?(2)在(1)的条件下,若该校在校师生共1800人,平均每人每天都需使用10ml的免洗手消毒液,则这批消毒液可使用多少天?3、解方程组:.4、解方程组:(1)(2)5、解方程组:(1)(2) -参考答案-一、单选题1、A【解析】【分析】求出方程组的解得到a与b的值,即可确定出-a-b的值.【详解】解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则-a-b=-4,故选:A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、C【解析】略3、A【解析】【分析】把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.【详解】解:把x=1代入方程组,可得,解得y=2,将y=2代入1+my=0中,得m=,故选:A.【点睛】此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.4、B【解析】【分析】根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x,y的二元一次方程组,此题得解.【详解】依题意,得:故选:B【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5、A【解析】【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x,宽为y,由题意得: 或,故选A.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.6、C【解析】【分析】先根据x=y,把原方程变成,然后求出x的值,代入求出a的值即可.【详解】解∵x=y,∴原方程组可变形为,解方程①得x=1,将代入②得,解得,故选C.【点睛】本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.7、B【解析】【分析】设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.【详解】设小长方形的宽为,长为,由图可得:,得:,把代入①得:,大长方形的宽为:,大长方形的面积为:,7个小长方形的面积为:,阴影部分的面积为:.故选:B.【点睛】本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.8、B【解析】【分析】设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.【详解】解:设同时开动x台机组,每台机组每小时处理a吨污水,依题意,得,解得:,∵5ax=30a+5a,∴x=7.答:要同时开动7台机组.故选:B.【点睛】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.9、C【解析】【分析】先求出方程组的解,由方程组的解为正整数分析得出a值.【详解】解:解方程组,得, ∵方程组的解为正整数,∴a=0时,;a=2时,, ∴满足条件的所有整数a的和为0+2=2.故选:C.【点睛】此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.10、B【解析】【分析】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.【详解】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据题意得:,②–①可得:.故选:B.【点睛】本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.二、填空题1、3【解析】【分析】先根据二元一次方程的定义求出a、b的值,然后代入a﹣b计算即可.【详解】解:∵x2a﹣3+yb+2=3是二元一次方程,∴2a﹣3=1,b+2=1,∴a=2,b=﹣1,则a﹣b=2﹣(﹣1)=2+1=3.故答案为:3.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.2、##0.4【解析】【分析】根据关键语“等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立”,只要让等式两边x的系数和常数分别相等即可列出方程组求解.【详解】解:(2A﹣7B)x+(3A﹣8B)=8x+10,∴,解得:,则A+B=,故答案为:.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.3、 (1),(2) (1),(3) (1)【解析】【分析】根据二元一次方程解的定义:使二元一次方程左右两边相等的一组未知数的值,分别将三组数值代入两个方程中求出各自的解,即可得到方程组的解.【详解】解:当时,方程的左边为:,方程左右两边相等,∴是方程的解;当时,方程的左边为:,方程左右两边相等,∴是方程的解;当时,方程的左边为:,方程左右两边不相等,∴不是方程的解;当时,方程的左边为:,方程左右两边相等,∴是方程的解;当时,方程的左边为:,方程左右两边不相等,∴不是方程的解;当时,方程的左边为:,方程左右两边相等,∴不是方程的解;∴方程组的解为;故答案为:①(1),(2);②(1),(3);③(1).【点睛】本题主要考查了二元一次方程和二元一次方程组的解,数值二元一次方程解得定义是解题的关键.4、14【解析】略5、【解析】【分析】把看做已知数表示出即可.【详解】解:方程,解得:,∴.故答案为:.【点睛】本题考查了解二元一次方程,解题的关键是将看做已知数表示出.三、解答题1、 (1)B(2)二;应该等于(3)【解析】【分析】(1)②−③消去了x,得到了关于y的一元一次方程,所以这是加减消元法;(2)第二步开始出现错误,具体错误是−3y−(−4y)应该等于y;(3)解方程组即可.(1)解:②③消去了,得到了关于的一元一次方程,故答案为:;(2)解:第二步开始出现错误,具体错误是应该等于,故答案为:二;应该等于;(3)解:②③得,将代入①,得:,原方程组的解为.故答案为:.【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.2、 (1)甲种消毒液购买了100瓶,乙种消毒液购买了300瓶.(2)这批消毒液可使用10天.【解析】【分析】(1)设甲种消毒液购买x瓶,乙种消毒液购买y瓶,由甲、乙两种免洗手消毒液共400瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶,列二元一次方程组求解即可;(2)设这批消毒液可使用a天,由该校在校师生共1800人,平均每人每天都需使用10ml的免洗手消毒液,然后列出方程可求解即可.(1)解:设甲种消毒液购买了x瓶,乙种消毒液购买了y瓶,依题意得:,解得:.答:甲种消毒液购买了100瓶,乙种消毒液购买了300瓶.(2)解:设这批消毒液可使用a天,由题意可得:1800×10×a=100×300+300×500,解得:a=10,答:这批消毒液可使用10天.【点睛】本题主要考查了二元一次方程组的应用、一元一次方程的应用,根据题意设出合适未知数、正确列出方程和方程组是解答本题的关键.3、【解析】【分析】利用加减消元法求解即可.【详解】解:整理可得, ②×2,可得:4x﹣2y=72③,③+①,可得:7x=84,解得:x=12,把x=12代入②,可得:24﹣y=36,解得:y=﹣12,∴方程组的解为.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,将二元方程转化为一元方程是解题的关键.4、 (1)(2)【解析】【分析】根据加减消元的方法求解即可.(1)解:,由①-②得:, ∴,把代入②,解得:,∴方程组的解为;(2)解:方程组整理得:,由①+②,得:,∴,把代入①,得:,∴方程组的解为.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、 (1)(2)【解析】【分析】用代入消元法或加减消元法解二元一次方程即可.(1)原方程可转化为,由①,得③,把③代入②,得,把代入①,得,故原方程组的解为.(2)原方程组可转化为,由①×4+②×5得:,解得,把代入②式得:,故原方程组的解为.【点睛】本题考查了解二元一次方程组,把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代人消元法,简称代入法.当二元一次方程组的两个方程中间一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.
相关试卷
这是一份数学七年级下册第六章 二元一次方程组综合与测试达标测试,共18页。试卷主要包含了有下列方程等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题,共21页。试卷主要包含了方程组 消去x得到的方程是,学校计划用200元钱购买,已知关于x等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试习题,共21页。试卷主要包含了下列方程组中,二元一次方程组有,已知,则等内容,欢迎下载使用。