初中数学冀教版七年级下册第六章 二元一次方程组综合与测试综合训练题
展开冀教版七年级下册第六章二元一次方程组专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、已知是二元一次方程,则的值为( )
A. B.1 C. D.2
2、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺!设绳索长x尺,竿长y尺,则符合题意的方程组是( )
A. B. C. D.
3、已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值为( )
A.2 B.1 C.﹣1 D.﹣2
4、已知关于x,y的二元一次方程组的解是,则a+b的值是( )
A.1 B.2 C.﹣1 D.0
5、下列各组数中,是二元一次方程组的解的是( )
A. B. C. D.
6、已知a,b满足方程组则的值为( )
A. B.4 C. D.2
7、下列方程中,是关于x的一元二次方程的是( )
A.x(x-2)=0 B.x2-1-y=0 C.x2+1=x2-2x D.ax2+c=0
8、已知,则( )
A. B. C. D.
9、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )
A. B. C. D.
10、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )
A. B.
C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于x,y的方程是二元一次方程,则的值是__________.
2、随着期末考试来临,八年级的同学们在学校延时服务期间平心静气作规划,补短板.王丹同学原计划星期一延时服务期间复习语文、数学、英语的时间为2:3:5,数学老师提醒要学科均衡,他便将英语复习时间的20%分给了语文和数学,调整后语文和数学的复习时间之比为3:5.王丹同学非常刻苦,实际复习时还挤出星期一的部分休息时间分给了三个学科,其中35%分给了语文,这样语文复习时间与三科总复习时间比为4:15.若王丹同学最终希望使数学与英语复习时间比为5:6,那么星期一挤出的休息时间中分给数学的时间与最后三科总复习时间之比为________.
3、已知二元一次方程,用含的代数式示,则________.
4、红星体育用品厂生产了一种体育用品礼品套装,已知该套装一套包含2个足球,4个篮球,6副羽毛球.一爱心企业向该厂订购了一批礼品套装,捐赠给希望小学,以丰富师生的课外活动,他们需要厂家在10天内生产完该套装并交货.红星体育用品厂将工人分为A、B、C三个组,分别生产足球、篮球、羽毛球,他们于某天零点开始工作,每天24小时轮班连续工作.(假设每组每小时工作效率不变).若干天后的零点A组完成任务,再过几天后(不小于1天)的中午12点,B组完成任务,再过几天(不小于1天)后的下午6点(即当天18点),C组完成任务.已知A、B、C三个组每天完成的任务数分别是240个,320个,320副,则该爱心企业一共订购了__________套体育用品礼品套装.
5、若是方程kx﹣3y=1的一个解,则k=_____.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:.
2、2021年是中国历史上的超级航天年,渝飞航模专卖店看准商机,8月初推出了“天问一号”和“嫦娥五号”两款模型.每个“天问一号”模型的售价是90元,每个“嫦娥五号”模型的售价是100元.
(1)若8月份销售“天问一号”模型的数量比“嫦娥五号”模型数量多200个,销售两种模型的总销售额为56000元,求销售“天问一号”模型和“嫦娥五号”模型的数量各是多少?
(2)该店决定从9月1日起推出“逐梦航天、仰望星空”优惠活动,9月份,每个“天问一号”模型的售价与8月份相同,销量比8月份增加a%;每个“嫦娥五号”模型的售价在8月份的基础上降价a%,销量比8月份增加a%.
①用含有a的代数式填表(不需化简):
| 9月份的售价(元) | 9月份销量 |
“天问一号”模型 | 90 |
|
“嫦娥五号”模型 |
|
|
②据统计,该店在9月份的销售总额比8月份的销售总额增加a%,求a的值.
3、解方程组:
4、已知方程组的解适合,求m的值.
5、如图,在大长方形ABCD中,放入8个小长方形,
(1)每个小长方形的长和宽分别是多少厘米?
(2)图中阴影部分面积为多少平方厘米?
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.
【详解】
解:∵是二元一次方程,
∴ ,且 ,
解得: .
故选:C
【点睛】
本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.
2、A
【解析】
【分析】
根据题意可列出等量关系:绳长=竿长+5尺,竿长=绳长的一半+5尺,据此列方程即可.
【详解】
解:设绳索长x尺,竿长y尺,则
故选:A.
【点睛】
本题考查由实际问题抽象出二元一次方程组,关键是正确理解题意,找出等量关系,由等量关系列方程.
3、A
【解析】
【分析】
把x=2,y=﹣1代入方程ax+y=3中,得到2a-1=3,解方程即可.
【详解】
∵x=2,y=﹣1是方程ax+y=3的一组解,
∴2a-1=3,
解得a=2,
故选A.
【点睛】
本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.
4、B
【解析】
【分析】
将代入即可求出a与b的值;
【详解】
解:将代入得:
,
∴a+b=2;
故选:B.
【点睛】
本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.
5、B
【解析】
【分析】
由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.
【详解】
解:,
得③,
得④,
③+④得,解得,
将代入②得,解得,
所以是二元一次方程组的解.
故选:B.
【点睛】
本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.
6、A
【解析】
【分析】
求出方程组的解得到a与b的值,即可确定出-a-b的值.
【详解】
解:,
①+②×5得:16a=32,即a=2,
把a=2代入①得:b=2,
则-a-b=-4,
故选:A.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
7、A
【解析】
【分析】
根据一元二次方程的定义,对选项逐个判断即可,一元二次方程是指化简后,只含有一个未知数并且未知数的次数为2的整式方程.
【详解】
解:A、含有一个未知数,且未知数次数为2,为一元二次方程,符合题意;
B、含有两个未知数,不是一元二次方程,不符合题意;
C、,含有一个未知数,不是一元二次方程,不符合题意;
D、当时,不是一元二次方程,不符合题意;
故选:A
【点睛】
此题考查了一元二次方程的定义,解题的关键是理解一元二次方程的概念.
8、B
【解析】
【分析】
根据二元一次方程组的解法以及非负数的性质即可求出答案.
【详解】
解:由题意可知:
解得: ,
故选:B.
【点睛】
本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.
9、A
【解析】
【分析】
直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.
【详解】
解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:
.
故选:A.
【点睛】
此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.
10、B
【解析】
【分析】
设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.
【详解】
解:设甲持钱x,乙持钱y,
根据题意,得:,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
二、填空题
1、0
【解析】
【分析】
根据二元一次方程的定义含有两个未知数并且含未知数的项的次数为1的方程是二元一次方程,建立方程组计算即可.
【详解】
解:∵关于,的方程是二元一次方程,
∴,
解得,
∴mn=0,
故答案为:0.
【点睛】
本题考查了二元一次方程的定义,二元一次方程组的解法,代数式的值,根据方程的定义构造方程组是解题的关键.
2、1:12
【解析】
【分析】
设语文,数学,英语复习时间一共有10a小时,得到最初王丹同学分配的时间为:语文2a小时,数学3a小时,英语5a小时,然后英语复习时间的20%分给了语文和数学,算出调整后语文、数学、英语的时间,设挤出来的休息时间有x小时,列出关于x的方程,求出挤出来的休息时间有5a小时,得到数学与英语增加的时间,由最终数学与英语复习时间比为5:6,得到分给数学的时间,即可得答案.
【详解】
解:假设语文,数学,英语复习时间一共有10a小时,则最初王丹同学分配的时间为:语文2a小时,数学3a小时,英语5a小时,则英语复习时间的20%为:5a×20%=a (小时),所以英语的时间变成5a-a=4a(小时),语文和数学的总时间变更为:10a-4a=6a(小时),又有调整后语文:数学=3:5,所以语文调整后的时间为(小时),数学调整后的时间为(小时),
设挤出来的休息时间有x小时,则依题意得:
(35%x+a):(10a+x)=4:15,
解这个方程得:x=5a
所以数学与英语增加的时间为:5a×(1-35%)=3.25a(小时),所以数学与英语的总复习时间为:a+4a+3.25a=11a (小时),所以数学的复习时间为:a(小时),所以分给数学的时间是:5a-a=a,三课的总复习时间为:10a+5a=15a(小时),所以分给数学的时间:三课总复习时间=a:15a=1:12,
故答案为:1:12.
【点睛】
本题考查了比例的有关内容,做题的关键是弄清题意,注意时间的特征与比例的变化.
3、
【解析】
【分析】
把看做已知数表示出即可.
【详解】
解:
方程,
解得:,
∴.
故答案为:.
【点睛】
本题考查了解二元一次方程,解题的关键是将看做已知数表示出.
4、360
【解析】
【分析】
由套装中包含足球、篮球、羽毛球的数量可得出:生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.设A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,根据三种体育用品数量之间的关系,即可得出关于x,y,z的三元一次方程组,解之可得出2z=3y,结合y,z均为一位正整数可得出z为3的倍数,分别代入z=3,z=6,z=9求出x值,再结合该套装一套包含2个足球即可求出该企业订购体育用品礼品套装的数量.
【详解】
解:∵该套装一套包含2个足球,4个篮球,6副羽毛球,
∴生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.
设A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,
依题意得:,
∴,
∴2z=3y.
又∵x,y,z均为一位正整数,
∴z为3的倍数.
当z=3时,x=,不合题意,舍去;
当z=6时,x=3,此时y=4;
当z=9时,x=,不合题意,舍去.
∴该爱心企业订购体育用品礼品套装的数量为240×3÷2=360(套).
故答案为:360.
【点睛】
本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
5、﹣5
【解析】
【分析】
根据方程的解的定义,将代入方程kx−3y=1,可得−2k−9=1,故k=−5.
【详解】
解:由题意得:﹣2k﹣3×3=1.
∴k=﹣5.
故答案为:﹣5.
【点睛】
本题属于简单题,主要考查方程的解的定义,即使得方程成立的未知数的值.
三、解答题
1、
【解析】
【详解】
解:,
②③得:④,
由④和①组成一个二次一次方程组,
解得:,
把代入③,
解得:,
所以原方程组的解是:.
【点睛】
此题考查了解三元一次方程组,解题的关键是利用了消元的思想,消元的方法有:代入消元法与加减消元法.
2、 (1)销售天问一号模型和嫦娥五号模型的数量各是400个与200个
(2)①100(1- a%);400(1+a%);200(1+a%);②10
【解析】
【分析】
(1)首先设销售“天问一号”模型和“嫦娥五号”模型的数量各x个,y个,根据销售“天问一号”模型的数量比“嫦娥五号”模型数量多200个可列出方程,由销售两种模型的总销售额为56000元可列出方程,把这两个方程组成一个二元一次方程组,解这个方程组即可得到本题答案;
(2)①由9月份,每个“天问一号”模型的售价与8月份相同,销量比8月份增加a%,可得9月份“天问一号”模型的销量为400(1+a%)个;“嫦娥五号”模型的售价在8月份的基础上降价a%,,销量比8月份增加a%,可得“嫦娥五号”模型的销量为200(1+a%)个,可得“嫦娥五号”模型的售价为100(1- a%);②根据该店在9月份的销售总额比8月份的销售总额增加a%,可得90×400(1+a%)+100(1﹣a%)×200(1+a%)=(90×400+100×200)(1+a%),计算即可得出a的值.
(1)
解:设销售“天问一号”模型和“嫦娥五号”模型的数量各x个,y个,根据题得:
解得:
答:销售“天问一号”模型和“嫦娥五号”模型的数量各是400个与200个。
(2)
解:①∵9月份,“嫦娥五号”模型的售价在8月份的基础上降价a% ,“天问一号”模型的销量比8月份增加a%,“嫦娥五号”模型的销量比8月份增加a%,
∴9月份,“天问一号”模型的销量为400(1+a%)个,“嫦娥五号”模型的销量为200(1+a%)个.
故答案为:100(1- a%);400(1+a%);200(1+a%).
②依题意得:90×400(1+a%)+100(1﹣a%)×200(1+a%)=(90×400+100×200)(1+a%),
整理得:3a2﹣30a=0,解得:a1=10,a2=0(不合题意,舍去).
答:a的值为10.
【点睛】
本题主要考查了二元一次方程组的应用,一元二次方程的应用等知识.
3、
【解析】
【分析】
根据加减消元法求解即可.
【详解】
解:
两式相加消元得,
∴,
∴方程组的解为:
【点睛】
本题考查了二元一次方程组.解题的关键是利用消元法求解.
4、
【解析】
【分析】
方程组消去m得到关于x与y的方程,与已知方程联立成方程组,再利用加减消元法解题.
【详解】
解:方程组消去m得,x+4y=2,
联立得
①-②得,
-3y=6
y=-2
把y=-2代入①得,x=10
.
【点睛】
本题考查二元一次方程组的解、解二元一次方程组等知识,是基础考点,掌握相关知识是解题关键.
5、 (1)7厘米和2厘米
(2)53平方厘米
【解析】
【分析】
(1)设小长方形宽为x厘米,长为y厘米,由图象列二元一次方程组,代入消元法求解即可.
(2)阴影面积为大长方形ABCD面积减去8个小长方形面积.
(1)
设小长方形宽为x厘米,长为y厘米,则有
BC=4x+y=15,CD=2x+y,AB=9+x
∵AB=CD
∴2x+y =9+x
即x+y=9
故有二元一次方程组
将y=9-x代入4x+y=15有
4x+9-x =15
解得x=2
将x=2代入y=9-x
解得y=7
故小长方形的长和宽分别是7厘米和2厘米.
(2)
由(1)问可知大长方形长ABCD为15cm,宽为11cm,则长方形面积为15×11=165cm2
小长方形的面积为2×7=14cm2
由题干知长方形中有8个小长方形
故
即
【点睛】
本题考查了列二元一次方程组,列二元一次方程组解应用题的一般步骤,审:审题,明确各数量之间的关系,设:设未知数(一般求什么,就设什么),找:找出应用题中的相等关系,列:根据相等关系列出两个方程,组成方程组,解:解方程组,求出未知数的值,答:检验方程组的解是否符合题意,写出答案.
初中数学第六章 二元一次方程组综合与测试课时作业: 这是一份初中数学第六章 二元一次方程组综合与测试课时作业,共20页。试卷主要包含了用代入消元法解关于等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习题,共21页。试卷主要包含了已知二元一次方程组则,若方程组的解为,则方程组的解为等内容,欢迎下载使用。
数学七年级下册第六章 二元一次方程组综合与测试当堂达标检测题: 这是一份数学七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共18页。试卷主要包含了《九章算术》中记载,若关于x等内容,欢迎下载使用。