数学七年级下册第六章 二元一次方程组综合与测试练习题
展开
这是一份数学七年级下册第六章 二元一次方程组综合与测试练习题,共20页。试卷主要包含了学校计划用200元钱购买,某学校体育有场的环形跑道长,甲等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、关于x,y的方程是二元一次方程,则m和n的值是( )A. B. C. D.2、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺!设绳索长x尺,竿长y尺,则符合题意的方程组是( )A. B. C. D.3、初一课外活动中,某兴趣小组80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,那么8人组最多可能有几组( )A.5组 B.6组 C.7组 D.8组4、学校计划用200元钱购买、两种奖品(两种都要买),种每个15元,种每个25元,在钱全部用完的情况下,有多少种购买方案( )A.2种 B.3种 C.4种 D.5种5、己知是关于,的二元一次方程的解,则的值是( )A.3 B. C.2 D.6、下列各组数值是二元一次方程的解是( )A. B. C. D.7、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是( )A.1 B.﹣1 C.2 D.﹣28、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )A.1 B.﹣1 C.2 D.﹣39、某学校体育有场的环形跑道长,甲、乙分别以一定的速度练习长跑和骑自行车.同时同地出发,如果反向而行,那么他们每隔相遇一次.如果同向而行,那么每隔乙就追上甲一次,设甲的速度为,乙的速度为,则可列方程组为( )A. B. C. D.10、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )A.2 B.1 C. D.0第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、一元一次方程的一般形式为:______(a,b为常数,a≠0);一元一次不等式的一般形式为:______或______(a,b为常数,a≠0);二元一次方程的一般形式为:______(a,b,c为常数,a≠0,b≠0)2、某销商10月份销售B、C三种奶茶的数量之比为2:3:4,A、B、C三种奶茶的单价之比为1:2:3.11月份该销售商加大了宣传力度,并根据季节对三种奶茶的价格作了适当的调整,预计11月份三种奶茶的销售总额将比10月份有所增加,其中A奶茶增加的销售额占11月份销售总额的,A、C奶茶的销售额之比是2:9.11月份三种奶茶的单价之和比10月份增加.11月份C奶茶的数量在10月份基础上上调50%,A、B奶茶的数量不变,则11月份A、B奶茶的单价之比为 ___.3、已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=_____.4、含有两个未知数,并且所含未知数的项的次数都是1的方程,叫做____.判断一个方程是否为二元一次方程:(1)二元一次方程的条件:①____方程;②只含____个未知数;③两个未知数系数都不为____;④含有未知数的项的次数都是____.(2)二元一次方程的一般形式:ax+by=c(a≠0,b≠0).5、如果将方程变形为用含的式子表示,那么_______.三、解答题(5小题,每小题10分,共计50分)1、解方程组:.2、解方程组:(1);(2).3、解方程组:.4、解方程组:(1)(2)5、若一个三位正整数(各个数位上的数字均不为0)满足,则称这个三位正整数为“长久数”.对于一个“长久数”m,将它的百位数字和个位数字交换以后得到新数n,记.如:满足,则216为“长久数”,那么,所以.(1)求、的值;(2)对于任意一个“长久数”m,若能被5整除,求所有满足条件的“长久数”. -参考答案-一、单选题1、C【解析】【分析】根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.【详解】解:由题意可得:,即①+②得:,解得将代入①得,故故选:C【点睛】此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.2、A【解析】【分析】根据题意可列出等量关系:绳长=竿长+5尺,竿长=绳长的一半+5尺,据此列方程即可.【详解】解:设绳索长x尺,竿长y尺,则故选:A.【点睛】本题考查由实际问题抽象出二元一次方程组,关键是正确理解题意,找出等量关系,由等量关系列方程.3、B【解析】【分析】设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,根据题意得方程8x+7y+(12﹣x﹣y)×5=80,于是得到结论.【详解】解:设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,由题意得,8x+7y+(12﹣x﹣y)×5=80,∴3x+2y=20,当x=1时,y=,当x=2时,y=7,当x=4时,y=4,当x=6时,y=1,∴8人组最多可能有6组,故选B.【点睛】本题考查了二元一次方程的应用,正确的理解题意是解题的关键.4、A【解析】【分析】设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为非负整数求出解即可得.【详解】解:设购买了A种奖品x个,B种奖品y个,根据题意得:,化简整理得:,得,∵x,y为非负整数,∴,,,∴购买方案为:方案1:购买了A种奖品0个,B种奖品8个;方案2:购买了A种奖品5个,B种奖品5个;方案3:购买了A种奖品10个,B种奖品2个;∵两种奖品都要买,∴方案1不符合题意,舍去,综上可得:有两种购买方案.故选:A.【点睛】本题考查了二元一次方程的应用,根据题意列出二元一次方程,然后根据解为非负整数确定未知数的值是解题关键.5、A【解析】【分析】将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.6、D【解析】【分析】将选项中的解分别代入方程,使方程成立的即为所求.【详解】解:A.代入方程,,不满足题意;B.代入方程,,不满足题意;C.代入方程,,不满足题意;D.代入方程,,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,熟练掌握二元一次方程的解与二元一次方程的关系是解题的关键.7、C【解析】【分析】先求出的解,然后代入kx+y=7求解即可.【详解】解:联立,②-①,得-3y=3,∴y=-1,把y=-1代入①,得x-1=3∴x=4,∴,代入kx+y=7得:4k﹣1=7,∴k=2,故选:C.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.8、C【解析】【分析】先求出方程组的解,由方程组的解为正整数分析得出a值.【详解】解:解方程组,得, ∵方程组的解为正整数,∴a=0时,;a=2时,, ∴满足条件的所有整数a的和为0+2=2.故选:C.【点睛】此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.9、A【解析】【分析】此题中的等量关系有:①反向而行,则两人20秒共走250米;②同向而行,则50秒乙比甲多跑250米.【详解】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y-x)=400.那么列方程组,故选:A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,注意追及问题和相遇问题不同的求解方法是解题的关键.10、D【解析】【分析】解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.【详解】解:,①+②得2x=2a+6,x=a+3,把代入①,得a+3+y=-a+1,y=-2a-2,∵x+2y=﹣1∴a+3+2(-2a-2)=-1,∴a=0,故选D.【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.二、填空题1、 ax+b=0 ax+b≥0 ax+b≤0 ax+by+c=0【解析】略2、【解析】【分析】根据三种饮料的数量比、单价比,可以按照比例设未知数,即10月份A、B、C三种饮料的销售的数量和单价分别为2a、3a、4a;b、2b、3b.可以表示出10月份各种饮料的销售额和总销售额.因问题中涉及到A的10月销售数量,因此可以设11月份A的销售量为x,再根据A11月份的单价求出11月份A的销售额和C的销售额.可以根据饮料增加的销售额占11月份销售总额比,用未知数列出等式关键即可求解出.【详解】解:由题意可设10月份、、三种饮料的销售的数量为、、,单价为、、;11月份的销售量为,则11月份、、三种饮料的销售的数量为、、;月份奶茶销售额为,11月份种奶茶的销售额为:,、奶茶的销售额之比是,月份种奶茶的销售额为:,月份种奶茶的价格为,月份三种奶茶的单价之和比10月份增加,月份三种奶茶的单价之和为,月份种奶茶的单价为:,奶茶增加的销售额占11月份销售总额的,,解得,,.即11月份、奶茶的单价之比为为.故答案为:.【点睛】此题考查的是二元一次方程的应用,掌握用代数式表示每个参数,并用整体法解题是关键.3、##0.4【解析】【分析】根据关键语“等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立”,只要让等式两边x的系数和常数分别相等即可列出方程组求解.【详解】解:(2A﹣7B)x+(3A﹣8B)=8x+10,∴,解得:,则A+B=,故答案为:.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.4、 二元一次方程 整式 两 0 1【解析】略5、【解析】【分析】先移项,再系数化为1即可.【详解】解:移项,得:,方程两边同时除以,得:,故答案为:.【点睛】本题考查了解二元一次方程,将x看作常数,把y看做未知数,灵活应用等式的性质求解是关键.三、解答题1、【解析】【详解】解:,用②①,得:,解得:,将代入①,得:,解得:,方程组的解为.【点睛】此题考查了解二元一次方程组,正确掌握解方程组的方法:代入法和加减法并应用解决问题是解题的关键.2、 (1)(2)【解析】【分析】(1)②﹣①得出4y=12,求出y,再把y=3代入②求出x即可;(2)整理后①+②得出6x=12,求出x,再把x=2代入①求出y即可.(1),②﹣①,得4y=12,解得:y=3,把y=3代入②,得x+3=15,解得:x=12,所以方程组的解是;(2),原方程组化为:,①+②,得6x=12,解得:x=2,把x=2代入①,得6+2y=4,解得:y=﹣1,所以方程组的解是.【点睛】本题考查解二元一次方程组,解题的关键是消元,常用消元的方法有代入消元法和加减消元法.3、【解析】【详解】解:,②③得:④,由④和①组成一个二次一次方程组,解得:,把代入③,解得:,所以原方程组的解是:.【点睛】此题考查了解三元一次方程组,解题的关键是利用了消元的思想,消元的方法有:代入消元法与加减消元法.4、(1);(2)【解析】【分析】(1)利用加减法求解;(2)先将方程整理,再利用加减法求出方程组的解.【详解】解:(1),①×5+②,14x=-14,解得x=-1,把x=-1代入①,-2+y=-5,解得y=-3,∴原方程组的解是; (2)方程组整理得由①+②得:6x=18,∴x=3,把x=3代入①得:, 所以方程组的解为.【点睛】此题考查了解二元一次方程组,正确掌握解二元一次方程组的解法:代入消元法及加减消元法是解题的关键.5、 (1),(2)【解析】【分析】(1)根据定义求解即可;(2)根据新定义写出,,根据整式的加减化简,进而根据,且能被5整除,得出,解二元一次方程即可求解,从而求得.(1)解:∵当时,,∴当时,(2)设,则,能被5整除,是5的倍数,且是均不为0的正整数的正整数解为:又 所有满足条件的“长久数”【点睛】本题考查了二元一次方程组的应用,新定义,整除,理解题意是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试练习,共18页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习,共18页。试卷主要包含了方程x+y=6的正整数解有,二元一次方程的解可以是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题,共17页。试卷主要包含了已知关于x等内容,欢迎下载使用。