搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版七年级下册第六章二元一次方程组课时练习练习题(含详解)

    2021-2022学年最新冀教版七年级下册第六章二元一次方程组课时练习练习题(含详解)第1页
    2021-2022学年最新冀教版七年级下册第六章二元一次方程组课时练习练习题(含详解)第2页
    2021-2022学年最新冀教版七年级下册第六章二元一次方程组课时练习练习题(含详解)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题

    展开

    这是一份冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题,共20页。试卷主要包含了有下列方程,已知x,y满足,则x-y的值为,若是方程的解,则等于,下列方程是二元一次方程的是等内容,欢迎下载使用。
    冀教版七年级下册第六章二元一次方程组课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  0分)一、单选题(10小题,每小题0分,共计0分)1、二元一次方程组更适合用哪种方法消元(   A.代入消元法 B.加减消元法C.代入、加减消元法都可以 D.以上都不对2、已知关于xy的方程组的解满足2xy=2k,则k的值为(       A.k B.k C.k D.k3、若方程组的解为,则方程组的解为(  )A. B.C. D.4、有下列方程:①xy=1;②2x=3y;③;④x2y=3; ⑤;⑥ax2+2x+3y=0 (a=0),其中,二元一次方程有(       A.1个 B.2个 C.3个 D.4个5、已知xy满足,则x-y的值为(       A.3 B.-3 C.5 D.06、若关于xy的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为(       A.2 B.1 C. D.07、若是方程的解,则等于(       A. B. C. D.8、下列方程中,属于二元一次方程的是(  )A.xy﹣3=1 B.4x﹣2y=3 C.x+=4 D.x2﹣4y=19、下列方程是二元一次方程的是(  )A.xxy=1 B.x2y﹣2x=1 C.3xy=1 D.﹣2y=110、下列方程中,是二元一次方程组的是(       A. B. C. D.第Ⅱ卷(非选择题  100分)二、填空题(5小题,每小题4分,共计20分)1、已知二元一次方程组为,则2x﹣2y的值为 _____.2、2021年11月2日,重庆市九龙坡区、长寿区分别新增1例新冠本土确诊.当疫情出现后,各级政府及有关部门高度重视,坚决阻断疫情传播.开州区赵家工业园区一家民营公司为了防疫需要,引进一条口罩生产线生产口罩,该产品有三种型号,通过市场调研后,按三种型号受消费者喜爱的程度分别对A型、B型、C型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个月的经营后,发现C型产品的销量占总销量的,且三种型号的总利润率为35%.第二个月,公司决定对A型产品进行升级,升级后A型产品的成本提高了25%,销量提高了20%;B型、C型产品的销量和成本均不变,且三种产品在第二个月成本基础上分别加价20%,30%,50%出售,则第二个月的总利润率为________.3、请写出一个二元一次方程组______,使它的解为4、三元一次方程组:含有___未知数,每个方程中含有未知数的项的___都是____,并且一共有____方程,这样的方程组叫做三元一次方程组.5、将方程2x+y﹣1=0变形为用含有y的式子表示x,则x=__________________.三、解答题(5小题,每小题10分,共计50分)1、解下列方程或方程组:(1)4x-2 =2x+3(2)(3)2、解方程组:3、某校艺术节表演了30个节目,其中歌曲类节目比舞蹈类节目的3倍少2个,问歌唱类节目和舞蹈类节目各有多少个.4、风味美饭店生意火爆,座无虚席,老板决定扩大规模重新装修.若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元.(1)甲、乙两施工队工作一天,风味美饭店老板应各付多少钱?(2)若装修完后,风味美饭店马上投入使用,每天可盈利300元,现有三种方案:甲队单独做:②乙队单独做;③甲、乙两队同时做,你认为哪一种施工方案更有利于饭店老板?请你说明理由.5、解方程组: -参考答案-一、单选题1、B【解析】【分析】由题意直接根据加减消元法和代入消元法的特点进行判断即可.【详解】解:②,得,消去了未知数即二元一次方程组更适合用加减法消元,故选:【点睛】本题考查解二元一次方程组,注意掌握解二元一次方程组的方法有:代入消元法和加减消元法两种.2、A【解析】【分析】根据得出,然后代入中即可求解.【详解】解:①+②得③,①﹣③得:②﹣③得:解得:故选:A.【点睛】本题考查了解三元一次方程组,根据题意得出的代数式是解题的关键.3、B【解析】【分析】由整体思想可得,求出xy即可.【详解】解:∵方程组的解为∴方程组的解故选:B.【点睛】本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.4、C【解析】5、A【解析】【分析】用第二个方程减去第一个方程即可解答.【详解】解:∵∴3x-4y-(2x-3y)=8-5x-y=3.故选A.【点睛】本题主要考查了解二元一次方程组以及求代数式的值,掌握整体法成为解答本题的关键.6、D【解析】【分析】解方程组,用a表示xy,把xy代入x+2y=﹣1中得到关于a的方程,解方程即可.【详解】解:①+②得2x=2a+6,x=a+3,把代入①,得a+3+y=-a+1,y=-2a-2,x+2y=﹣1a+3+2(-2a-2)=-1,a=0,故选D.【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示xy,把xy代入x+2y=﹣1中得到关于a的方程是解题的关键.7、B【解析】【分析】代入到方程中得到关于k的方程,解方程即可得到答案.【详解】解:∵是方程的解,故选B.【点睛】本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.8、B【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【详解】解:A、xy-3=1,是二元二次方程,故本选项不合题意;B、4x-2y=3,属于二元一次方程,故本选项符合题意;C、x+=4,是分式方程,故本选项不合题意;D、x2-4y=1,是二元二次方程,故本选项不合题意;故选:B.【点睛】此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.9、C【解析】【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、xxy=1含有两个未知数,但未知数的最高次数是2次,xxy=1不是二元一次方程;B、x2y﹣2x=1含有两个未知数.未知数的最高次数是2次,x2y﹣2x=1不是二元一次方程;C、3xy=1含有两个未知数,未知数的最大次数是1次,∴3xy=1是二元一次方程;D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.10、B【解析】【分析】根据二元一次方程组的定义解答.【详解】解:A中含有两个未知数,含未知数的项的最高次数为2,故不符合定义;B符合定义,故是二元一次方程组;C中含有分式,故不符合定义;D含有三个未知数,故不符合定义;故选:B【点睛】此题考查了二元一次方程组定义:含有两个未知数,且含有未知数的项的最高次数为2的整式方程是二元一次方程组,熟记定义是解题的关键.二、填空题1、-2【解析】【分析】利用整体思想,两式相减得到x-y=-1,整体代入到代数式中求值即可.【详解】解:①-②得:xy=﹣1,∴2x﹣2y=2(xy=2×(﹣1)=﹣2,故答案为:﹣2.【点睛】本题考查了二元一次方程组的应用,利用整体思想,两式相减得到x-y=-1是解题的关键.2、34%【解析】【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为aA产品原销量为xB产品原销量为yC产品原销量为z,由题意列出方程组,解得;第二个月A产品成本为(1+25%)a=aBC的成本仍为aA产品销量为(1+20%)x=xB产品销量为yC产品销量为z,则可求得第二个月的总利润率.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,A型、B型、C型三种型号产品原来的成本为aA产品原销量为xB产品原销量为yC产品原销量为z由题意得:解得:第二个月A产品的成本提高了25%,成本为:(1+25%)a=aBC的成本仍为aA产品销量为(1+20%)x=xB产品销量为yC产品销量为z∴第二个季度的总利润率为:=0.34=34%.故答案为:34%.【点睛】本题考查了利用三元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.3、(答案不唯一)【解析】【分析】根据二元一次方程组的解找到xy的数量关系,然后列出方程组即可.【详解】解:∵二元一次方程组的解为∴这个方程组可以是故答案为:(答案不唯一),【点睛】本题考查的是二元一次方程组解的定义,解答此题的关键是把方程的解代入各组方程中,看各方程是否成立.4、     三个     次数     1     3个【解析】【分析】由题意直接根据三元一次方程组的定义进行填空即可.【详解】解:含有三个未知数,每个方程中含未知数的项的次数均为1,并且一共有3个方程,这样的方程组叫做三元一次方程组.故答案为:三个,次数,1,3个.【点睛】本题考查三元一次方程组的定义,注意掌握含有三个未知数,每个方程中含未知数的项的次数均为一次,并且一共有3个方程,这样的方程组叫做三元一次方程组.5、【解析】【分析】y看作已知数求出x即可.【详解】解:2x+y﹣1=02x=1-yx故答案为:【点睛】本题考查了二元一次方程的解法,先用含其中一个未知数的代数式表示另一个未知数,本题即是将y看作已知数求出x三、解答题1、 (1)(2)(3)【解析】【分析】(1)移项、合并同类项、系数化1,即可求解;(2)去分母、去括号、移项、合并同类项、系数化1,即可求解;(3)利用加减消元法求解方程组即可.(1)解:4x-2=2x+3,移项,得4x-2x=3+2,合并同类项,得2x=5,系数化为1,得 (2)解: 去分母,得4(x+1)-9x=24,去括号,得4x+4-9x=24,移项,得4x-9x=24-4,合并同类项,得-5x=20,系数化为1,得x=-4;(3)解:②-①×3,得x=-1,x=-1代入①,得-1-y=2,解得y=-3,故方程组的解为【点睛】本题考查一元一次方程及二元一次方程组的解法,解题的关键是熟知解题步骤.2、【解析】【分析】观察方程组各个含有未知数的项的系数,可加减消元法解二元一次方程组.【详解】解:,得:,得:代入①得:∴该方程组的解为【点睛】本题考查了二元一次方程组的解法,熟练掌握代入消元法或加减消元法解二元一次方程组是解题的关键.3、歌唱类节目和舞蹈类节目分别有22个和8个【解析】【分析】由题意,歌唱类节目+舞蹈类节目=30个,歌曲类节目=3倍舞蹈类节目-2个,设未知数列方程组求解.【详解】解:设歌唱类节目x个,舞蹈类节目y个,由题意,得解得:答:歌唱类节目和舞蹈类节目分别有22个和8个.【点睛】本题考查了二元一次方程组的应用,正确找到等量关系,并以此列出方程是解题的关键.4、 (1)甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.(2)安排甲、乙两个装修施工队同时施工更有利于饭店【解析】【分析】(1)设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,根据“若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元”,即可得出关于xy的二元一次方程施工队,解之即可得出结论;(2)设甲施工队单独完成工程需要a天,乙施工队单独完成工程需要b天,根据题意列方程组求出两施工队单独完成工程的天数,根据总费用=每天需支付的费用×工作时间,可分别求出单独请甲施工队和单独请乙施工队施工所需费用,分单独请甲施工队施工、单独请乙施工队施工和请甲、乙两施工队合做施工三种情况考虑,分别求出三种情况下损失的钱数,比较后即可得出结论.(1)设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,依题意,得:解得:答:甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.(2)设甲施工队单独完成工程需要a天,乙施工队单独完成工程需要b天,根据题意得, 解得, 经检验,是方程组的解,单独请甲施工队需要的费用为400×21=8400(元);单独请乙施工队需要的费用为250×28=7000(元).同做:(天)合做需要的费用为(元)甲乙合做比乙单独做早完工(28-12)=16(天)16天饭店收益:16×300=4800(元)7800-4800=3000(元),即相对于乙单独做甲乙合做只花3000元;甲单独做比乙单独做早完工:28-21=7(天)300×7=2100(元),8400-2100=6300(元),即相对于乙单独做甲乙合做只花6300元;∵3000<6300<7000,∴甲、乙合做花费最少.答:安排甲、乙两个装修施工队同时施工更有利于饭店【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程施工队;(2)利用总费用=每天需支付的费用×工作时间,分别求出单独请甲施工队和单独请乙施工队施工所需费用;(3)利用损失的总钱数=施工费用+因装修损失收入,分别求出三种施工方式损失的总钱数.5、【解析】【详解】解:②,得解得:代入①,得解得:所以方程组的解是【点睛】本题考查了解二元一次方程组,解题的关键是能把二元一次方程组转化成一元一次方程. 

    相关试卷

    冀教版七年级下册第六章 二元一次方程组综合与测试课后测评:

    这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共17页。试卷主要包含了在一次爱心捐助活动中,八年级,已知是二元一次方程,则的值为,已知x,y满足,则x-y的值为等内容,欢迎下载使用。

    初中数学第六章 二元一次方程组综合与测试单元测试课后作业题:

    这是一份初中数学第六章 二元一次方程组综合与测试单元测试课后作业题,共19页。试卷主要包含了已知是方程的解,则k的值为,某学校体育有场的环形跑道长,甲等内容,欢迎下载使用。

    数学七年级下册第六章 二元一次方程组综合与测试练习题:

    这是一份数学七年级下册第六章 二元一次方程组综合与测试练习题,共21页。试卷主要包含了已知,则等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map