![2021-2022学年冀教版七年级下册第六章二元一次方程组专题攻克试卷(无超纲带解析)第1页](http://img-preview.51jiaoxi.com/2/3/12716707/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级下册第六章二元一次方程组专题攻克试卷(无超纲带解析)第2页](http://img-preview.51jiaoxi.com/2/3/12716707/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级下册第六章二元一次方程组专题攻克试卷(无超纲带解析)第3页](http://img-preview.51jiaoxi.com/2/3/12716707/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后练习题
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后练习题,共19页。试卷主要包含了若关于x等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、现有一批脐橙运往外地销售,A型车载满一次可运3吨,B型车载满一次可运4吨,现有脐橙31吨,计划同时租用A,B两种车型,一次运完且恰好每辆车都载满脐橙,租车方案共有( )A.2种 B.3种 C.4种 D.5种2、已知关于x,y的二元一次方程组的解是,则a+b的值是( )A.1 B.2 C.﹣1 D.03、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )A. B.C. D.4、如图,分别用火柴棍连续搭建等边三角形和正六边形,公共边只用一根火柴棍.如果搭建等边三角形和正六边形共用了2018根火柴,并且等边三角形的个数比正六边形的个数多7,那么连续搭建的等边三角形的个数是( )A.291 B.292 C.293 D.2945、下列各组数中,是二元一次方程组的解的是( )A. B. C. D.6、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )A.6台 B.7台 C.8台 D.9台7、将方程x+2y=11变形为用含x的式子表示y,下列变形中正确的是( )A.y= B.y= C.x=2y﹣11 D.x=11﹣2y8、若关于x、y的二元一次方程的解,也是方程的解,则m的值为( )A.-3 B.-2 C.2 D.无法计算9、已知是二元一次方程的一组解,则m的值是( )A. B.3 C. D.10、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )A.1 B.﹣1 C.2 D.﹣3第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、若关于x,y的二元一次方程组无解,则______.2、有甲乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍,若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求这两个两位数.解:设甲数为x,乙数为y.依题意,得 解此方程组,得___________所以,甲数是24,乙数是123、二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化成____________方程了,于是可以求出其中的一个未知数,然后再求另一个未知数.这种将未知数的个数由多转化少、逐一解决的想法,叫做____________思想.4、在2022新春佳节即将来临之际,某商家拟推出收费定制个性新春礼品,礼品主要包含三种:对联、门神和红包,如果定制对联副、门神副、红包个,需付人民币元;如果定制对联副、门神副、红包个,需付人民币元;某人想定制副对联、副门神、个红包共需付人民币_______元.5、一个两位数,个位上的数字比十位上的数字大3,将个位数字与十位数字交换位置所得到的新两位数比原两位数的3倍少1,则原两位数为_____.三、解答题(5小题,每小题10分,共计50分)1、阅读:一个两位数,若它刚好等于它各位数字之和的整数倍,我们称这个两位数为本原数;把一个本原数的十位数字、个位数字交换后得到一个新的两位数,我们称这个新的两位数为本原数的奇异数.(1)一本原数刚好是组成它的两个数字之和的4倍.请写出符合条件的所有本原数;(2)一本原数刚好等于组成它的数字之和的3倍,它的奇异数刚好是两个数字之和的k倍.请问k的值是多少?(3)一个本原数刚好等于组成它的数字之和的m倍,它的奇异数刚好是这个数的数字之和的n倍,试说明m和n的关系.2、(1)解方程:;(2)解方程组:3、为了做好学校疫情防控工作,某中学开学前需备足防疫物资,准备购买N95口罩(单位:只)和医用外科口罩(单位:包)若干.根据标价,已知购买10只N95口罩和9包医用外科口罩共需236元,购买一只N95口罩的费用是购买一包医用外科口罩费用的5倍.(1)求一只N95口罩和一包医用外科口罩的标价各是多少元?(2)市场上现有甲、乙两所医疗机构对该中学的采购给出如下的优惠方案:甲医疗机构:购买的口罩按标价结算,但每购买一只N95口罩赠送一包医用外科口罩;乙医疗机构:购买的口罩全部按标价打九折结算.若该中学准备购买1000只N95口罩和6000包医用外科口罩,考虑配送成本等其他因素,只能一次性从其中一家采购,问选择哪所医疗机构更省钱?4、解方程组(1)(2)5、用适当的方法解下列方程组:. -参考答案-一、单选题1、B【解析】【分析】设租A型车x辆,租B型车y辆,根据题意列方程得,正整数解即可.【详解】解:设租A型车x辆,租B型车y辆,根据题意列方程得,∴,∵均为正整数,∴是4的倍数,小于31的4的倍数有28,24,20,16,12,8,4,∴=28,解得x=1,,∴=24,解得,,∴=20,解得,∴=16,解得x=5,,∴=12,解得,∴=8,解得,∴=4,解得x=9,,∴租车方案有三种分别为:租A型车1辆,租B型车7辆或租A型车5辆,租B型车4辆或租A型车9辆,租B型车1辆.故选择B.【点睛】本题考查二元一次方程的正整数解,掌握应用二元一次方程解应用题,利用二元一次方程的正整数解解决方案设计问题是解题关键.2、B【解析】【分析】将代入即可求出a与b的值;【详解】解:将代入得: ,∴a+b=2;故选:B.【点睛】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.3、B【解析】【分析】设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.【详解】解:设学生人数为x,长凳数为y,由题意得:,故选B.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.4、C【解析】【分析】设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2018根火柴棍,并且三角形的个数比正六边形的个数多7个,列方程组求解即可.【详解】解:设连续搭建等边三角形x个,连续搭建正六边形y个,由题意,得,解得.故选C.【点睛】本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.5、B【解析】【分析】由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.【详解】解:,得③,得④,③+④得,解得,将代入②得,解得,所以是二元一次方程组的解.故选:B.【点睛】本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.6、B【解析】【分析】设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.【详解】解:设同时开动x台机组,每台机组每小时处理a吨污水,依题意,得,解得:,∵5ax=30a+5a,∴x=7.答:要同时开动7台机组.故选:B.【点睛】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.7、B【解析】【详解】解:,,.故选:B.【点睛】本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.8、C【解析】【分析】将m看作已知数值,利用加减消元法求出方程组的解,然后代入求解即可得.【详解】解:,得:,解得:,将代入①可得:,解得:,∴方程组的解为:,∵方程组的解也是方程的解,代入可得,解得,故选:C.【点睛】题目主要考查解二元一次方程组求参数,熟练掌握解二元一次方程组的方法是解题关键.9、A【解析】【分析】把代入5x+3y=1即可求出m的值.【详解】把代入5x+3y=1,得10+3m=1,∴m=-3,故选A.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.10、C【解析】【分析】先求出方程组的解,由方程组的解为正整数分析得出a值.【详解】解:解方程组,得, ∵方程组的解为正整数,∴a=0时,;a=2时,, ∴满足条件的所有整数a的和为0+2=2.故选:C.【点睛】此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.二、填空题1、−【解析】【分析】根据加减消元法消去y,得到x,因为方程组无解,所以令分母等于0,使这个解无意义,则原方程组无解.【详解】解:,①×2得:2mx+6y=18③,②×3得:3x−6y=3④,③+④得:(2m+3)x=21,∴x=,∵方程组无解,∴2m+3=0,∴m=−.故答案为:−.【点睛】本题考查了二元一次方程组的解,解题的关键是利用消元法求得x的值.2、【解析】略3、 一元一次 消元【解析】略4、41【解析】【分析】设定制1副对联需要元,1副门神需要元,1个红包需要元,根据“如果定制对联3副、门神2副、红包5个,需付人民币31.5元;如果定制对联2副、门神1副、红包1个,需付人民币22元”,即可得出关于,,的三元一次方程组,利用①②,即可求出定制4副对联、3副门神、9个红包所需费用.【详解】解:设定制1副对联需要元,1副门神需要元,1个红包需要元,依题意得:,①②得:.故答案为:41.【点睛】本题考查了三元一次方程组的应用,解题的关键是找准等量关系,正确列出三元一次方程组.5、14【解析】略三、解答题1、 (1)12,24,36,48;(2)(3)【解析】【分析】(1)设这个本原数的十位数字为x,个位数字为y,有,得的关系,进而得到答案.(2)设这个本原数的十位数字为x,个位数字为y,有,得的关系,找出满足条件的数,找出奇异数,进行求解即可.(3)设这个本原数的十位数字为x,个位数字为y.则由题意可列方程组,两式相加求解即可.(1)解:设这个本原数的十位数字为x,个位数字为y.由题意知:解得∴符合条件的本原数为12,24,36,48;(2)解:设这个本原数的十位数字为x,个位数字为y.由题意知:解得∴满足条件的数为27,它的奇异数是72∴∴;(3)解:设这个本原数的十位数字为x,个位数字为y.由题意知:①+②得∴【点睛】本题考查了二元一次方程组的应用.解题的关键在于依据题意正确的列方程.2、(1) ;(2)【解析】【分析】(1)先去分母,再去括号,然后移项合并同类项,即可求解;(2)由①+②×2可得 ,再代入②,即可求解.【详解】解:去分母得: ,去括号得: ,移项合并同类项得: ,解得: ;(2)由①+②×2得: ,解得: ,把代入②得: ,解得: ,∴原方程组的解为 .【点睛】本题主要考查了解一元一次方程和解二元一次方程组,熟练掌握一元一次方程和二元一次方程组的解法是解题的关键.3、(1)一只N95口罩20元,一包医用外科口罩4元;(2)选择乙医疗机构更省钱【解析】【分析】(1)设一只N95口罩x元,一包医用外科口罩y元,根据购买10只N95口罩和9包医用外科口罩共需236元,购买一只N95口罩的费用是购买一包医用外科口罩费用的5倍列出二元一次方程组即可;(2)分别算出两个机构的费用,比较大小即可.【详解】(1)设一只N95口罩x元,一包医用外科口罩y元,根据题意得,,解得:,所以一只N95口罩20元,一包医用外科口罩4元;(2)单独去甲医疗机构买总费用为:(元);单独去乙医疗机构买总费用为:(元);,∴选择乙医疗机构更省钱.【点睛】本题考查了二元一次方程组的应用,解题关键是熟练掌握题目中的数量关系,找到等量关系列出方程.4、 (1)(2)【解析】【分析】(1)利用加减消元法解方程组即可;(2)利用代入消元法解方程组即可.(1)解: 把①代入②得:,即,解得,把代入到①中得:,∴方程组的解为:;(2)解: ,用①×2-②得:,解得,把代入到①中得:,解得∴方程组的解为:.【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟知解二元一次方程组的方法.5、【解析】【分析】根据题意利用加减消元法,①×3+②,消去未知数y,求出未知数x的值,再代入其中一个方程求出y的值即可.【详解】解:,①②,得,解得,把代入①,得,解得.故方程组的解为.【点睛】本题考查解二元一次方程组,能把二元一次方程组转化成一元一次方程是解答此题的关键.
相关试卷
这是一份七年级下册第十一章 因式分解综合与测试达标测试,共17页。试卷主要包含了下列运算错误的是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份2021学年第六章 二元一次方程组综合与测试一课一练,共19页。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共20页。试卷主要包含了已知方程组的解满足,则的值为等内容,欢迎下载使用。