冀教版七年级下册第六章 二元一次方程组综合与测试习题
展开冀教版七年级下册第六章二元一次方程组重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、已知是二元一次方程组的解,则m+n的值为( )
A. B.5 C. D.
2、《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为人,牛价为 钱,根据题意,可列方程组为( )
A. B. C. D.
3、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )
A.1 B.﹣1 C.2 D.﹣3
4、己知是关于,的二元一次方程的解,则的值是( )
A.3 B. C.2 D.
5、下列各组数中,是二元一次方程组的解的是( )
A. B. C. D.
6、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )
A.4 B.3 C.2 D.1
7、如图,分别用火柴棍连续搭建等边三角形和正六边形,公共边只用一根火柴棍.如果搭建等边三角形和正六边形共用了2018根火柴,并且等边三角形的个数比正六边形的个数多7,那么连续搭建的等边三角形的个数是( )
A.291 B.292 C.293 D.294
8、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )
A.9 B.7 C.5 D.3
9、已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值为( )
A.2 B.1 C.﹣1 D.﹣2
10、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )
A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,且第一天比第二天少走2km,设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,可列方程组______.
2、某食品店推出两款袋装营养早餐配料,甲种每袋装有10克花生,10克芝麻,10克核桃;乙种每袋装有20克花生,5克芝麻,5克核桃.甲、乙两款袋装营养早餐配料每袋成本价分别为袋中花生、芝麻、核桃的成本价之和.已知花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%,乙款营养早餐配料每袋利润率为20%.若这两款袋装营养早餐配料的销售利润率达到24%,则该公司销售甲、乙两款袋装营养早餐配料的数量之比是______.
3、如果与的和是单项式, 则________ .
4、某超市有甲,乙,丙三种坚果礼盒,它们都是由,,三种坚果组成,甲,乙,丙三种坚果礼盒的成本均为盒内,,三种坚果的成本之和。超市现有甲,乙的数量相等,丙的数量比甲的数量多25%,甲种坚果礼盒内装有种坚果5袋,种坚果1袋,种坚果3袋,乙种坚果礼盒内装有种坚果4袋,种坚果2袋,种坚果6袋,每盒甲种坚果礼盒的成本是1袋种坚果成本的15倍,销售利润率是60%,每盒乙种坚果礼盒的售价是成本的倍,每盒丙种坚果礼盒在成本的基础上提价60%后打八折销售,获利为1袋种坚果成本的5.6倍,如果超市将所有礼盒全部售出,则该超市出售这三种坚果礼盒获得的总利润率为______.
5、识别一个方程组是否为二元一次方程组的方法:
一看:方程组中的方程是否都是____方程;
二看:方程组中是不是只含有____个未知数;
三看:含未知数的项的次数是不是都为____.
注意:有时还需将方程组化简后再看.
三、解答题(5小题,每小题10分,共计50分)
1、对于任意一个四位数,若千位上的数字与百位上的数字之和是十位上的数字与个位上的数字之和的2倍,则称是“2倍和数”.如,因为,所以3504是“2倍和数”;,因为,所以6824不是“2倍和数”.
(1)判断6423,4816是否为“2倍和数”?并说明理由;
(2)对于“2倍和数”,当百位上的数字是个位上的数字的3倍,且各数位上的数字之和能被9整除时,记.求的最大值和最小值.
2、小明家需要用钢管做防盗窗,按设计要求,其中需要长为,且粗细相同的钢管分别为100根,32根,并要求这些用料不能是焊接而成的,现钢材市场的这种规格的钢管每根为.
(1)试问一根长的圆钢管有哪些剪裁方法呢,请填写下空(余料作废).
方法①:当只裁剪长为的用料时,最多可剪_______根.
方法②:当先剪下1根时,余下部分最多能剪_______根长.
方法③:当先剪下2根时,余下部分最多能剪________根长.
(2)分别用(1)中的方法②和方法③各裁剪多少根长的钢管,才能刚好得到所需要的相应数量的材料.
3、(1)解方程:;
(2)解方程组:
4、甲仓库存粮比乙仓库存粮少5吨,现从甲仓库运出存粮30吨,从乙仓库运出存粮的40%,这时乙仓库所余粮食是甲仓库所余粮食的2倍,问甲、乙两仓库原各存粮多少吨?
5、解方程组:
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.
【详解】
解:∵是二元一次方程组的解,
∴,
解得,
∴m+n=5.
故选:B.
【点睛】
本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.
2、B
【解析】
【分析】
设合伙人数为人,牛价为 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.
【详解】
解:设合伙人数为人,牛价为 钱,根据题意得:
.
故选:B
【点睛】
本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
3、C
【解析】
【分析】
先求出方程组的解,由方程组的解为正整数分析得出a值.
【详解】
解:解方程组,得,
∵方程组的解为正整数,
∴a=0时,;a=2时,,
∴满足条件的所有整数a的和为0+2=2.
故选:C.
【点睛】
此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.
4、A
【解析】
【分析】
将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.
【详解】
解:将代入关于x,y的二元一次方程2x-y=27得:
2×3k-(-3k)=27.
∴k=3.
故选:A.
【点睛】
本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.
5、B
【解析】
【分析】
由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.
【详解】
解:,
得③,
得④,
③+④得,解得,
将代入②得,解得,
所以是二元一次方程组的解.
故选:B.
【点睛】
本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.
6、C
【解析】
【分析】
先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.
【详解】
解:由题意得:,
联立,
由①②得:,
解得,
将代入①得:,
解得,
将代入方程得:,
解得,
故选:C.
【点睛】
本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.
7、C
【解析】
【分析】
设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2018根火柴棍,并且三角形的个数比正六边形的个数多7个,列方程组求解即可.
【详解】
解:设连续搭建等边三角形x个,连续搭建正六边形y个,
由题意,得,
解得.
故选C.
【点睛】
本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.
8、B
【解析】
【分析】
先求出的解,然后代入可求出a的值.
【详解】
解:,
由①+②,可得2x=4a,
∴x=2a,
将x=2a代入①,得
2a-y=a,
∴y=2a﹣a=a,
∵二元一次方程组的解是二元一次方程的一个解,
∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,
∴a=7,
故选B.
【点睛】
本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.
9、A
【解析】
【分析】
把x=2,y=﹣1代入方程ax+y=3中,得到2a-1=3,解方程即可.
【详解】
∵x=2,y=﹣1是方程ax+y=3的一组解,
∴2a-1=3,
解得a=2,
故选A.
【点睛】
本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.
10、B
【解析】
【分析】
设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.
【详解】
解:设每件商品标价x元,进价y元则根据题意得:
,
解得:,
答:该商品每件进价155元,标价每件200元.
故选:B.
【点睛】
本题考查了二元一次方程的应用,找出正确等量关系是解题关键.
二、填空题
1、
【解析】
【分析】
相等关系有两个:两天行军的路程之和为98km,第一天行军的路程加上2km等于第二天的行军路程,再列方程组即可.
【详解】
解:设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,
则
故答案为:
【点睛】
本题考查的是二元一次方程组的应用,“确定相等关系列方程组”是解本题的关键.
2、13:30
【解析】
【分析】
设1克芝麻成本价m元,1克核桃成本价n元,根据“花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%”列出方程得到m+n=0.18,进而算出甲乙两款袋装营养早餐的成本价,再根据“甲每袋袋装营养早餐的售价为2.6元,利润率为30%,乙种袋装营养早餐每袋利润率为20%.若公司销售这种混合装的袋装营养早餐总利润率为24%”列出方程即可得到甲、乙两种袋装营养早餐的数量之比.
【详解】
解:设1克芝麻成本价m元,1克核桃成本价n元,根据题意得:
(10×0.02+10m+10n)×(1+30%)=2.6,
解得m+n=0.18,
则甲种干果的成本价为10×0.02+10m+10n=2(元),
乙种干果的成本价为20×0.02+5m+5n=0.4+5×0.18=1.3(元),
设甲种干果x袋,乙种干果y袋,根据题意得:
2x×30%+1.3y×20%=(2x+1.3y)×24%,
解得,,即甲、乙两种袋装袋装营养早餐的数量之比是13:30.
故答案为:13:30.
【点睛】
本题考查二元一次方程的应用,解题的关键是找出等量关系列出方程.
3、5
【解析】
【分析】
两个单项式,所含的字母相同,相同字母的指数也相同,则称这两个单项式是同类项,据此转化为解二元一次方程组,解得,再将其代入多项式中计算即可.
【详解】
解:∵与的和是单项式,
∴与是同类项,
∴,
解得:.
∴.
故答案为:5.
【点睛】
本题考查同类项的定义,合并同类项,涉及简单二元一次方程组解法,代数式求值,是基础考点,难度较易,掌握相关知识是解题关键.
4、45.31%.
【解析】
【分析】
设每袋a种坚果成本为x,每袋b种坚果成本为y,每袋c种坚果成果为z,甲种礼盒有n盒,乙种礼盒有n盒,丙种礼盒有1.25n盒,根据已知条件求出甲、乙、丙礼盒的成本和售价以及利润,根据利润率=总利润÷成本,即可得出结果.
【详解】
解:设每袋a种坚果成本为x,每袋b种坚果成本为y,每袋c种坚果成果为z,甲种礼盒有n盒,乙种礼盒有n盒,丙种礼盒有1.25n盒,
甲礼盒:5x+y+3z=15x,即y+3z=10x,售价为15x(1+60%)=25x,
乙礼盒:成本=4x+2y+6z=4x+2×10x=24x,售价为×24x=36x,
丙礼盒:设成本为m,则m(1+60%)×80%﹣m=5.6x,m=20x,售价为25.6x,
甲礼盒利润25x﹣15x=10x,
乙礼盒利润36x﹣24x=12x,
丙礼盒利润5.6x,
∴总利润率为≈45.31%,
故答案为:45.31%.
【点睛】
本题主要考查列代数式,整式加减法,三元一次方程的实际应用,分析题意,找到关键的描述语,找到合适的等量关系,同时熟悉有关销售问题的概念和公式是解决问题的关键,属于中档题.
5、 整式 两 1
【解析】
略
三、解答题
1、 (1)6423是“2倍和数”, 4816不是“2倍和数”,理由见解析;
(2)最大值是3117,最小值是1107.
【解析】
【分析】
(1)根据定义进行判断即可
(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,进而求得的各数位上的数字之和,根据,可得能被3整除,进而求二元一次方程的整数解即可,进而列出,即可求得的最大值和最小值.
(1)
,
∴6423是“2倍和数”,
,
∴4816不是“2倍和数”;
(2)
设的个位上的数字为,十位上的数字为,则百位上的数字为,
千位上的数字为,
,,,,为整数),
的各数位上的数字之和为,
各数位上的数字之和能被9整除,
能被3整除,
或,
,
,
,
的最大值是3117,最小值是1107.
【点睛】
本题考查了新定义,求二元一次方程的整数解,整除,理解新定义是解题的关键.
2、(1)7,4,1(2)用方法②剪24根,方法③裁剪4根6m长的钢管.
【解析】
【分析】
(1)由总数÷每份数=份数就可以直接得出结论;
(2)设用方法②剪x根,方法③裁剪y根6m长的钢管,就有x+2y=32,4x+y=100,由此构成方程组求出其解即可.
【详解】
解:(1)①6÷0.8=7…0.4,因此当只裁剪长为0.8m的用料时,最多可剪7根;
②(6-2.5)÷0.8=4…0.3,因此当先剪下1根2.5m的用料时,余下部分最多能剪0.8m长的用料4根;
③(6-2.5×2)÷0.8=1…0.2,因此当先剪下2根2.5m的用料时,余下部分最多能剪0.8m长的用料1根;
故答案为:7,4,1.
(2)设用方法②剪x根,方法③裁剪y根6m长的钢管,
由题意,得,
解得:.
答:用方法②剪24根,方法③裁剪4根6m长的钢管;
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
3、(1) ;(2)
【解析】
【分析】
(1)先去分母,再去括号,然后移项合并同类项,即可求解;
(2)由①+②×2可得 ,再代入②,即可求解.
【详解】
解:
去分母得: ,
去括号得: ,
移项合并同类项得: ,
解得: ;
(2)
由①+②×2得: ,
解得: ,
把代入②得: ,
解得: ,
∴原方程组的解为 .
【点睛】
本题主要考查了解一元一次方程和解二元一次方程组,熟练掌握一元一次方程和二元一次方程组的解法是解题的关键.
4、甲仓库原来存粮45吨,乙仓库原来存粮50吨
【解析】
【分析】
设甲仓库原来存粮吨,乙仓库原来存粮吨,由题意:甲仓库存粮比乙仓库存粮少5吨,从甲仓库运出存粮30吨,从乙仓库运出存粮的,这时乙仓库所余粮食是甲仓库所余粮食的2倍,列出方程组,解方程组即可.
【详解】
解:设甲仓库原来存粮吨,乙仓库原来存粮吨,
由题意得:,
解得:,
答:甲仓库原来存粮45吨,乙仓库原来存粮50吨.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,解题的关键是正确列出二元一次方程组.
5、
【解析】
【分析】
消元求解的值,代回式解的值即可.
【详解】
解:得
解得:
将代入式得
解得:
∴方程组的解为.
【点睛】
本题考查了一元二次方程组.解题的关键在于正确的减法消元求解.
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题,共19页。试卷主要包含了已知关于x,方程组 消去x得到的方程是等内容,欢迎下载使用。
数学七年级下册第六章 二元一次方程组综合与测试习题: 这是一份数学七年级下册第六章 二元一次方程组综合与测试习题,共20页。试卷主要包含了若方程组的解为,则方程组的解为,已知方程组的解满足,则的值为,方程组 消去x得到的方程是等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试复习练习题: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试复习练习题,共18页。试卷主要包含了若关于x,二元一次方程的解可以是等内容,欢迎下载使用。