![2022年冀教版七年级下册第六章二元一次方程组章节训练试题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12716767/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级下册第六章二元一次方程组章节训练试题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12716767/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级下册第六章二元一次方程组章节训练试题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12716767/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题,共20页。
冀教版七年级下册第六章二元一次方程组章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )A. B.C. D.2、方程x+y=6的正整数解有( )A.5个 B.6个 C.7个 D.无数个3、方程,,,,中是二元一次方程的有( )个A.1 B.2 C.3 D.44、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )A.1,0 B.0,﹣1 C.2,1 D.2,﹣35、佳佳坐在匀速行驶的车上,将每隔一段时间看到的里程碑上的数描述如下:时刻12:0013:0014:00里程碑上的数是一个两位数,数字之和为7十位数字和个位数字与12:00时看到的刚好相反比12:00看到的两位数中间多了个0则12:00时看到的两位数是( )A.16 B.25 C.34 D.526、现有一批脐橙运往外地销售,A型车载满一次可运3吨,B型车载满一次可运4吨,现有脐橙31吨,计划同时租用A,B两种车型,一次运完且恰好每辆车都载满脐橙,租车方案共有( )A.2种 B.3种 C.4种 D.5种7、已知关于x,y的方程组的唯一解是,则关于m,n的方程组的解是( )A. B. C. D.8、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )A.2 B.1 C. D.09、用加减法将方程组中的未知数x消去后,得到的方程是( ).A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=1610、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为______.2、成成和昊昊分别解答完成了20道数学试题,若答对了一题可以加上一个两位数的分数,答错了一题则要减去另一个两位数的分数,最终,成成得了333分,昊昊得了46分,那么,答错一题时应减去的分数为______分.3、将方程2x+y﹣1=0变形为用含有y的式子表示x,则x=__________________.4、5、为积极响应教育部对中小学生实行“五项管理”之读物管理,某书店购进了大量的文史类、科普类、生活类读物,每类读物进价分别是12元,10元,8元.同类读物的标价相同,且科普类和生活类读物的标价一样,该书店对这三类读物全部打6折销售.若每类读物的销量相同,则书店不亏不赚,此时生活类读物利润率为.若文史类、科普类、生活类销量之比是,则书店销售这三类读物的总利润率为_____.(利润率)三、解答题(5小题,每小题10分,共计50分)1、列方程或方程组解应用题:某校积极推进垃圾分类工作,拟采购30L和120L两种型号垃圾桶用于垃圾投放.已知采购5个30L垃圾桶和9个120L垃圾桶共需付费1000元;采购10个30L垃圾桶和5个120L垃圾桶共需付费700元,求30L垃圾桶和120L垃圾桶的单价.2、解方程组:(1)(2)3、小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?4、对于一个各个数位上的数字均不为零的三位自然数,若的十位数字等于百位数字与个位数字之和,则称这个自然数为“三峡数”.当三位自然数为“三峡数”时,交换的百位数字和个位数字后会得到一个三位自然数,规定.例如:当时,因为,所以583是“三峡数”;此时,则.(1)判断341和153是否是“二峡数”?并说明理由;(2)求的值;(3)若三位自然数(即的百位数字是,十位数字是,个位数字是,,,,是整数,)为“三峡数”,且时,求满足条件的所有三位自然数.5、甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司人均捐款120元,乙公司人均捐款100元.如图是甲、乙两公司员工的一段对话.(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买、两种防疫物资,种防疫物资每箱1500元,种防疫物资每箱1200元.若购买种防疫物资不少于20箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送). -参考答案-一、单选题1、C【解析】【分析】根据题意,x+y=40,5x+10y=275,判断即可.【详解】根据题意,得x+y=40,5x+10y=275,∴符合题意的方程组为,故选C.【点睛】本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.2、A【解析】【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可【详解】解:方程的正整数解有,,,,共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.3、A【解析】【详解】解:方程是二元一次方程,中的的未知数的次数,不是二元一次方程,含有三个未知数,不是二元一次方程,是代数式,不是二元一次方程,中的的未知数的次数是2,不是二元一次方程,综上, 二元一次方程的个数是1个,故选:A.【点睛】本题考查了二元一次方程,熟记二元一次方程的定义(含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.4、C【解析】【分析】根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.【详解】解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,∴ ,解得:. 故选:C【点睛】本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.5、A【解析】【分析】设小明12:00看到的两位数,十位数为x,个位数为y,根据车的速度不变和12:00时看到的两位数字之和为7,即可列出二元一次方程组,解方程组即可求解.【详解】设小明12:00看到的两位数,十位数为x,个位数为y,由题意列方程组得:,解得:,∴12:00时看到的两位数是16.故选:A.【点睛】本题考查二元一次方程组的应用,掌握里程碑上的数的表示是解题的关键.6、B【解析】【分析】设租A型车x辆,租B型车y辆,根据题意列方程得,正整数解即可.【详解】解:设租A型车x辆,租B型车y辆,根据题意列方程得,∴,∵均为正整数,∴是4的倍数,小于31的4的倍数有28,24,20,16,12,8,4,∴=28,解得x=1,,∴=24,解得,,∴=20,解得,∴=16,解得x=5,,∴=12,解得,∴=8,解得,∴=4,解得x=9,,∴租车方案有三种分别为:租A型车1辆,租B型车7辆或租A型车5辆,租B型车4辆或租A型车9辆,租B型车1辆.故选择B.【点睛】本题考查二元一次方程的正整数解,掌握应用二元一次方程解应用题,利用二元一次方程的正整数解解决方案设计问题是解题关键.7、A【解析】【分析】先将关于的方程组变形为,再根据关于的方程组的解可得,由此即可得出答案.【详解】解:关于的方程组可变形为,由题意得:,解得,故选:A.【点睛】本题考查了求二元一次方程组的解,正确发现两个方程组之间的联系是解题关键.8、D【解析】【分析】解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.【详解】解:,①+②得2x=2a+6,x=a+3,把代入①,得a+3+y=-a+1,y=-2a-2,∵x+2y=﹣1∴a+3+2(-2a-2)=-1,∴a=0,故选D.【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.9、D【解析】【分析】根据二元一次方程组的加减消元法可直接进行求解.【详解】解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;故选D.【点睛】本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.10、A【解析】【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.二、填空题1、-3【解析】【分析】两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.【详解】解:两个方程相加得:3x+3y=3a+9,∵x、y互为相反数,∴x+y=0,∴3x+3y=0,∴3a+9=0,解得:a=-3,故答案为:-3.【点睛】本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关键.2、10【解析】【分析】设成成答对了道,昊昊答对了道,答对了一题加上的分数为分,答错一题时应减去的分数为,根据题意列出方程组即可求解,进而根据确定,根据整除,可得或,进而即可求得,代入即可求得的值.【详解】设成成答对了道,昊昊答对了道,答对了一题加上的分数为a分,答错一题时应减去的分数,根据题意,得①-②得: 代入②得都是整数,则也是整数,且个位数为0,则或当时,,当时,,不符合题意,故答案为:【点睛】本题考查了二元一次方程组的应用,整除,根据题意列出方程组是解题的关键.3、【解析】【分析】将y看作已知数求出x即可.【详解】解:2x+y﹣1=02x=1-y,x= .故答案为:.【点睛】本题考查了二元一次方程的解法,先用含其中一个未知数的代数式表示另一个未知数,本题即是将y看作已知数求出x.4、2【解析】【分析】将代入二元一次方程可得一个关于的方程,解方程即可得.【详解】解:由题意,将代入方程得:,解得,5、【解析】【分析】设文史类、科普类、生活类读物的标价分别为元,元,元,则实际的售价分别为:元,元,元,根据每类读物的销量相同且都为,则书店不亏不赚,而生活类读物利润率为.列方程组,再解方程组求解的值,再计算当文史类、科普类、生活类销量之比是时的利润率即可.【详解】解:因为科普类和生活类读物的标价一样,设文史类、科普类、生活类读物的标价分别为元,元,元,则实际的售价分别为:元,元,元,当每类读物的销量相同且都为,则书店不亏不赚,而生活类读物利润率为. 解得: 当文史类、科普类、生活类销量之比是,设文史类、科普类、生活类销量分别为: 则书店销售这三类读物的总利润率为: 故答案为:【点睛】本题考查的是二元一次方程组的应用,理解题意,利用字母表示已知量,确定相等关系列方程组都是解本题的关键.三、解答题1、30L垃圾桶的单价是20元,120L垃圾桶的单价是100元【解析】【分析】设垃圾桶的单价是元,垃圾桶的单价是元,等量关系为:买5个30L垃圾桶的钱+买9个120L垃圾桶的钱=1000 ;买10个30L垃圾桶的钱+买5个120L垃圾桶的钱=700 ;根据这两个等量关系列出方程组并解方程组即可.【详解】设垃圾桶的单价是元,垃圾桶的单价是元,依题意得:,解得:.即垃圾桶的单价是20元,垃圾桶的单价是100元.【点睛】本题考查了二元一次方程组的应用,关键是理解题意,找到等量关系并正确列出方程组.2、 (1)(2)【解析】【分析】(1)用加法消元法求解;(2)用减法消元法求解.(1)∵①+②得:, ,将x=3代入①中得:, 得,∴原方程组的解是.(2)将方程组变形为,②,得③,③-①,得,把代入②,得.∴原方程组的解是.【点睛】本题考查了二元一次方程组的解法,根据题目特点,灵活选择解题方法是解题的关键.3、上坡路2.25千米、平路0.8千米、下坡路0.25千米【解析】【分析】本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程不变.题中的等量关系是:从家到学校的路程为3.3千米;去时上坡时间+下坡时间+平路时间=1小时;回时上坡时间+下坡时间+平路时间=44分,据此可列方程组求解.【详解】解:设去时上坡路是x千米,平路是y千米,下坡路是z千米.依题意得:,解得.答:上坡路2.25千米、平路0.8千米、下坡路0.25千米.【点睛】本题考查了三元一次方程组的应用,本题有三个未知量,还需注意去时是上坡路回时是下坡路,回来时恰好相反,平路不变.4、 (1)341是“三峡数”,153不是“三峡数”,理由见解析(2)(3)所有满足条件的是671、792【解析】【分析】(1)根据三峡数的定义分析即可;(2)根据计算;(3)根据列出关于a、b的二元一次方程,然后根据,求解;(1)341是“三峡数”,∵,∴341是“三峡数”;153不是“三峡数”,∵,∴153不是“三峡数”;(2);(3)由题知(,,,是整数),则,∴,, 则(,,,是整数),,,,答:所有满足条件的是671、792.【点睛】本题考查了新定义,以及解二元一次方程,正确理解“三峡数”的定义是解答本题的关键.5、 (1)甲公司150人,乙公司180人(2)共有两种方案,①种物资购买8箱,种物资购买20箱;②种物资购买4箱,种物资购买25箱【解析】【分析】(1)设甲公司人,乙公司人,根据题意列出二元一次方程组,求解即可;(2)设种物资购买箱,种物资购买箱,根据题意列出二元一次方程,求出整数解即可.(1)解:设甲公司人,乙公司人,根据题意得:,解得:,答:甲公司150人,乙公司180人;(2)设种物资购买箱,种物资购买箱,由题意得:,整理得:,,且、是正整数,当时,;当时,;答:共有两种方案,①种物资购买8箱,种物资购买20箱;②种物资购买4箱,种物资购买25箱.【点睛】本题考查了二元一次方程组的应用,解题关键是理清题意,正确找到等量关系,列出二元一次方程组.
相关试卷
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课时练习,共19页。试卷主要包含了有下列方程组,《孙子算经》记载等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后复习题,共18页。试卷主要包含了下列各式中是二元一次方程的是,有下列方程组,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试练习,共18页。试卷主要包含了已知a,b满足方程组则的值为,已知,则,有下列方程组等内容,欢迎下载使用。