初中冀教版第六章 二元一次方程组综合与测试同步测试题
展开
这是一份初中冀教版第六章 二元一次方程组综合与测试同步测试题,共20页。试卷主要包含了在一次爱心捐助活动中,八年级,若是方程组的解,则的值为等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、由方程组可以得出关于x和y的关系式是( )A. B. C. D.2、《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为人,牛价为 钱,根据题意,可列方程组为( )A. B. C. D. 3、下列各组数中,是二元一次方程组的解的是( )A. B. C. D.4、初一课外活动中,某兴趣小组80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,那么8人组最多可能有几组( )A.5组 B.6组 C.7组 D.8组5、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )A. B. C. D.6、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )A. B.C. D.7、若是方程组的解,则的值为( )A.16 B.-1 C.-16 D.18、已知关于x,y的方程组的唯一解是,则关于m,n的方程组的解是( )A. B. C. D.9、观察下列方程其中是二元一次方程是( )A.5x﹣y=35 B.xy=16C.2x2﹣1=0 D.3z﹣2(z+1)=610、《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?”设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是( )A. B.C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,且第一天比第二天少走2km,设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,可列方程组______.2、新春佳节享团圆,吉祥如意在虎年!新年将至,某超市第一周销售吉祥、如意、团圆三种年货礼包的数量之比为,吉祥、如意、团圆三种年货礼包的单价之比为.第二周由于人工成本的增加,超市管理人员把如意礼包的单价在第一周的基础上上调,吉祥、团圆礼包的单价保持不变,预计第二周三种年货礼包的销售总额比第一周有所增加,其中团圆礼包增加的销售额占第二周总销售额,如意礼包和团圆礼包的销售额之比是,三种礼包的数量之和比第一周增加,则团圆礼包第一周与第二周的数量之比为_____________.3、写出二元一次方程组 的所有正整数解________________.4、现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则可列方程组为___.5、中国的元旦,据传说起于三皇五帝之一的颛顼,距今已有3000多年的历史.“元旦”一词最早出现于《晋书》.“元旦节”前夕,某超市分别以每袋30元、20元、10元的价格购进腊排骨、腊香肠、腊肉各若干,由于该食品均是真空包装,只能成袋出售,每袋的售价分别为50元、40元、20元,元旦节当天卖出三种年货若干袋,元月2日腊排骨卖出的数量第一天腊排骨数量的3倍,腊香肠卖出的数量是第一天腊香肠数量的2倍,腊肉卖出的数量是第一天腊肉数量的4倍;元月3日卖出的腊排骨的数量是这三天卖出腊排骨的总数量的,卖出腊香肠的数量是前两天腊香肠数量和,卖出腊肉的数量是第二天腊肉数量的一半.若第三天三种年货的销售总额比第一天三种年货销售总额多1600元,这三天三种年货的销售总额为9350元,则这三天所售出的三种年货的总利润为______元.三、解答题(5小题,每小题10分,共计50分)1、六年级学生若干人报名参加课外活动小组,男女生人数之比为4:3,后来又报了15名女生,这时女生人数恰好是男生人数的2倍,求最初报名时男生与女生各有多少人?2、用适当的方法解下列方程组:.3、对于数轴上的点和正数,给出如下定义:点在数轴上移动,沿负方向移动个单位长度后所在位置点表示的数是,沿正方向移动个单位长度后所在位置点表示的数是,与这两个数叫做“点的对称数”,记作,其中.例如:原点表示,原点的对称数是.(1)若点表示,则点的对称数,则 , ;(2)若,求点表示的数及的值;(3)己知,,若点、点从原点同时出发,沿数轴反向运动,且点的速度是点速度的倍,当时,请直接写出点表示的数.4、茜茜数码专卖店销售容量分别为、、、和的五种移动盘,2020年10月1日的销售情况如下表:盘容量124816销售数量(只563 (1)由于不小心,表中销售数量中,和销售数量被污染,但知道的销售数量比的销售数量的2倍少2只,且5种盘的销售总量是30只.求和的销售数量.(2)若移动盘的容量每增加,其销售单价增加10元,已知2020年10月1日当天销售这五种盘的营业额是2730元,求容量为的移动盘的销售单价是多少元?5、解方程组:. -参考答案-一、单选题1、C【解析】【分析】分别用x,y表示m,即可得到结果;【详解】由,得到,由,得到,∴,∴;故选C.【点睛】本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.2、B【解析】【分析】设合伙人数为人,牛价为 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.【详解】解:设合伙人数为人,牛价为 钱,根据题意得: .故选:B【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.3、B【解析】【分析】由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.【详解】解:,得③,得④,③+④得,解得,将代入②得,解得,所以是二元一次方程组的解.故选:B.【点睛】本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.4、B【解析】【分析】设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,根据题意得方程8x+7y+(12﹣x﹣y)×5=80,于是得到结论.【详解】解:设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,由题意得,8x+7y+(12﹣x﹣y)×5=80,∴3x+2y=20,当x=1时,y=,当x=2时,y=7,当x=4时,y=4,当x=6时,y=1,∴8人组最多可能有6组,故选B.【点睛】本题考查了二元一次方程的应用,正确的理解题意是解题的关键.5、A【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.【详解】解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:.故选:A.【点睛】此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.6、C【解析】【分析】根据题意,x+y=40,5x+10y=275,判断即可.【详解】根据题意,得x+y=40,5x+10y=275,∴符合题意的方程组为,故选C.【点睛】本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.7、C【解析】【分析】把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.【详解】解:把代入方程组得,两式相加得;两式相差得:,∴,故选C.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8、A【解析】【分析】先将关于的方程组变形为,再根据关于的方程组的解可得,由此即可得出答案.【详解】解:关于的方程组可变形为,由题意得:,解得,故选:A.【点睛】本题考查了求二元一次方程组的解,正确发现两个方程组之间的联系是解题关键.9、A【解析】【分析】根据二元一次方程的定义解答即可.【详解】解:A、该方程符合二元一次方程的定义,符合题意.B、该方程是二元二次方程,不符合题意.C、该方程是一元二次方程,不符合题意.D、该方程是一元一次方程,不符合题意.故选:A.【点睛】本题主要考查了二元一次方程的定义,含有两个未知数且每个未知数的次数均为1的方程是二元一次方程.10、B【解析】【分析】设他买了x亩好田,y亩坏田,根据总价=单价×数量,结合购买好田坏田一共是100亩且共花费了10000元,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设他买了x亩好田,y亩坏田,∵共买好、坏田1顷(1顷=100亩).∴x+y=100;∵今有好田1亩,价值300钱;坏田7亩,价值500钱,购买100亩田共花费10000钱,∴300x+y=10000.联立两方程组成方程组得:.故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题1、【解析】【分析】相等关系有两个:两天行军的路程之和为98km,第一天行军的路程加上2km等于第二天的行军路程,再列方程组即可.【详解】解:设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,则故答案为:【点睛】本题考查的是二元一次方程组的应用,“确定相等关系列方程组”是解本题的关键.2、4:5【解析】【分析】设某超市第一周销售吉祥、如意、团圆三种年货礼包的数量为3a,a,4a,三种年货礼包的单价为b,5b,2b,则第一周销售额可得;设第二周如意年货礼包的销售数量为y,由于第二周礼包的单价在第一周的基础上上调,所以第二周礼包的单价为6y,销售额为6by,则团圆礼包第二周销售额为8by,利用已知条件列出方程求解即可【详解】解:设某超市第一周销售吉祥、如意、团圆三种年货礼包的数量为3a,a,4a,三种年货礼包的单价为b,5b,2b,则第二周三种年货的售价为:b,5b×1.2=6b,2b;设第二周三种年货的销量分别为x,y,z,∵如意礼包和团圆礼包的销售额之比是,∴ ∴ 第二周团圆包增加的销售额为: ∵团圆礼包增加的销售额占第二周总销售额,∴ ∴ ∵三种礼包的数量之和比第一周增加,∴ ∴ ∴ ∴团圆礼包第一周与第二周的数量之比为 故答案为:4:5【点睛】本题考查三元一次方程的应用;理解题意,能够通过所给的量之间的关系列出正确的方程是解题的关键.3、 【解析】【分析】先把方程3x+y=10变形为 y=10-3x,再根据整除的特征,逐一尝试即可求解.【详解】解:∵3x+y=10,∴y=10-3x,∴原方程的所有正整数解是,,,故答案为:,,.【点睛】本题考查了二元一次方程的整数解,求二元一次方程的正整数解,可以先用含一个未知数的代数式表示另一个未知数,再根据整除的特征,逐一尝试即可.4、【解析】【分析】根据题意可得等量关系:绳索长=竿长+5尺,竿长=绳索长的一半+5尺,根据等量关系可得方程组.【详解】解:设绳索长尺,竿长尺,由题意得:,故答案为:.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.5、4300【解析】【分析】设元旦节当天三种年货腊排骨、腊香肠、腊肉的销售数量分别是x、y、z(x、y、z均为正整数)袋,则三天的销售数量如下表:单位(袋) 腊排骨腊香肠腊肉元月1号 元月2号 元月3号 再列方程组,解方程组即可得到答案.【详解】解:设元旦节当天三种年货腊排骨、腊香肠、腊肉的销售数量分别是x、y、z(x、y、z均为正整数)袋,则,整理得,利用代入消元,得, 所有当,则 , 即 所有,,,所有总利润为(元).故答案为:4300【点睛】本题考查的是三元一次方程组的应用,方程组的正整数解问题,设出适当的未知数表示需要的量再确定相等关系列方程是解本题的关键.三、解答题1、最初报名时男生有12人,女生有9人.【解析】【分析】设最初报名时女生有x人,男生有y人,由题意:男女生人数之比为4:3,后来又报了15名女生,这时女生人数恰好是男生人数的2倍,列出方程组,解之即可.【详解】解:设最初报名时女生有x人,男生有y人,依题意,得:,解得:,答:最初报名时男生有12人,女生有9人.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2、【解析】【分析】根据题意利用加减消元法,①×3+②,消去未知数y,求出未知数x的值,再代入其中一个方程求出y的值即可.【详解】解:,①②,得,解得,把代入①,得,解得.故方程组的解为.【点睛】本题考查解二元一次方程组,能把二元一次方程组转化成一元一次方程是解答此题的关键.3、 (1)(2)(3)【解析】【分析】(1)读懂题干中的定义,利用定义进行求解;(2)根据,列出关于的二元一次方程组求解即可;(3)假设点的位置是,点的速度是点速度的2倍,点的位置是,此时,根据点的位置,可以算出,.根据点的位置,得出,,代入中,得到,解出即可.(1)解:,,故答案所示:;(2)解:,,解得:;(3)解:假设点的位置是,因为点的速度是点速度的2倍,所以点的位置是,此时,根据点的位置,可以算出,,根据点的位置,可以算出,,代入中,得到,解得:,.【点睛】本题为创新型题目,解题的关键是重点在题目意思的理解,结合分析可以利用数形结合的方法求解,在掌握了题目含义的基础上,进行解答.注意“,的数值是关于对称”的运用.4、 (1)容量为的移动盘的销售数量为6只,容量为的移动盘的销售数量为10只;(2)容量为的移动盘的销售单价是80元.【解析】【分析】(1)设容量为的移动盘的销售数量为x只,容量为的移动盘的销售数量为y只,根据题意列出二元一次方程组求解即可得;(2)设容量为的移动盘的销售单价是m元,则容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,根据题意列出一元一次方程求解即可得.(1)设容量为的移动盘的销售数量为x只,容量为的移动盘的销售数量为y只,依题意得:,解得:.答:容量为的移动盘的销售数量为6只,容量为的移动盘的销售数量为10只.(2)设容量为的移动盘的销售单价是m元,则容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,依题意得:,解得:.答:容量为的移动盘的销售单价是80元.【点睛】题目主要考查二元一次方程组及一元一次方程的应用,理解题意,列出方程是解题关键.5、【解析】【分析】直接利用加减消元法解方程组求解即可;【详解】解:,①+②×2,得7x=10,解得:x=,把x=代入②,得+y=2,解得:y=,所以方程组的解是.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
相关试卷
这是一份数学七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共18页。试卷主要包含了有下列方程,已知x,y满足,则x-y的值为,《九章算术》中记载,若关于x等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题,共20页。试卷主要包含了某学校体育有场的环形跑道长,甲等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试达标测试,共20页。