![2022年强化训练冀教版七年级下册第六章二元一次方程组课时练习试卷(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12716889/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版七年级下册第六章二元一次方程组课时练习试卷(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12716889/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版七年级下册第六章二元一次方程组课时练习试卷(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12716889/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中冀教版第六章 二元一次方程组综合与测试课时作业
展开
这是一份初中冀教版第六章 二元一次方程组综合与测试课时作业,共18页。
冀教版七年级下册第六章二元一次方程组课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )A. B.C. D.2、某学校体育有场的环形跑道长,甲、乙分别以一定的速度练习长跑和骑自行车.同时同地出发,如果反向而行,那么他们每隔相遇一次.如果同向而行,那么每隔乙就追上甲一次,设甲的速度为,乙的速度为,则可列方程组为( )A. B. C. D.3、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )A.1个 B.2个 C.3个 D.4个4、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )A.60厘米 B.80厘米 C.100厘米 D.120厘米5、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1) D.y=1﹣2x6、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想7、将方程x+2y=11变形为用含x的式子表示y,下列变形中正确的是( )A.y= B.y= C.x=2y﹣11 D.x=11﹣2y8、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺!设绳索长x尺,竿长y尺,则符合题意的方程组是( )A. B. C. D.9、《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?”设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是( )A. B.C. D.10、下列方程组中,二元一次方程组有( )①;②;③;④.A.4个 B.3个 C.2个 D.1个第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、已知5xm﹣2﹣y2n+5=0是关于x、y的二元一次方程,则m﹣n=___.2、定义新运算:规定※,若3※,2※,则※※__.3、把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现____________,从而求得方程组的解,这种解方程组的方法叫做____________,简称代入法.4、已知是方程2x+ay=7的一个解,那么a=_____.5、如果与的和是单项式, 则________ .三、解答题(5小题,每小题10分,共计50分)1、解方程组:.2、以“花开中国梦”为主题的第十届中国花卉博览会于2021年5月21日至7月2日在上海市崇明区东平国家森林公园举办,本届花博会的门票分为平日票、指定日票等种类,其中平日票每张120元,指定日票每张180元,小明计划用2100元购买平日票和指定日票共15张.(1)求小明计划购买平日票和指定日票各几张?(2)为了鼓励大家提前购买,主办方决定,凡是在5月21日前购票的,平日票和指定日票都可以享受低于原价的预售价.小明决定按照预售价提前购票,在购票时小明发现:如果不改变原计划购买的门票种类及相应的张数,总金额可以节约300元;如果不改变原计划购票的总金额,那么可以购买5张平日票和10张指定日票,求平日票和指定日票的预售价分别是多少元?3、对于任意一个四位数,若千位上的数字与百位上的数字之和是十位上的数字与个位上的数字之和的2倍,则称是“2倍和数”.如,因为,所以3504是“2倍和数”;,因为,所以6824不是“2倍和数”.(1)判断6423,4816是否为“2倍和数”?并说明理由;(2)对于“2倍和数”,当百位上的数字是个位上的数字的3倍,且各数位上的数字之和能被9整除时,记.求的最大值和最小值.4、已知方程组的解、的值之和等于2,求的值.5、解方程(组):(1);(2). -参考答案-一、单选题1、C【解析】【分析】根据题意,x+y=40,5x+10y=275,判断即可.【详解】根据题意,得x+y=40,5x+10y=275,∴符合题意的方程组为,故选C.【点睛】本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.2、A【解析】【分析】此题中的等量关系有:①反向而行,则两人20秒共走250米;②同向而行,则50秒乙比甲多跑250米.【详解】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y-x)=400.那么列方程组,故选:A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,注意追及问题和相遇问题不同的求解方法是解题的关键.3、A【解析】【分析】含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.【详解】解:①x+y=6是二元一次方程;②x(x+y)=2,即不是二元一次方程;③3x-y=z+1是三元一次方程;④m+=7不是二元一次方程;故符合题意的有:①,故选A【点睛】本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.4、D【解析】【分析】设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;【详解】设小长方形的长为x,小长方形的宽为y,根据题意可得:,解得:,∴每个小长方形的周长是;故选D.【点睛】本题主要考查了二元一次方程组的应用,准确计算是解题的关键.5、B【解析】【分析】设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.【详解】解:设大马驮x袋,小马驮y袋.根据题意,得.故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.6、A【解析】【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.7、B【解析】【详解】解:,,.故选:B.【点睛】本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.8、A【解析】【分析】根据题意可列出等量关系:绳长=竿长+5尺,竿长=绳长的一半+5尺,据此列方程即可.【详解】解:设绳索长x尺,竿长y尺,则故选:A.【点睛】本题考查由实际问题抽象出二元一次方程组,关键是正确理解题意,找出等量关系,由等量关系列方程.9、B【解析】【分析】设他买了x亩好田,y亩坏田,根据总价=单价×数量,结合购买好田坏田一共是100亩且共花费了10000元,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设他买了x亩好田,y亩坏田,∵共买好、坏田1顷(1顷=100亩).∴x+y=100;∵今有好田1亩,价值300钱;坏田7亩,价值500钱,购买100亩田共花费10000钱,∴300x+y=10000.联立两方程组成方程组得:.故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.10、C【解析】【分析】组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程.【详解】解:①、符合二元一次方程组的定义,故①符合题意;②、第一个方程与第二个方程所含未知数共有3个,故②不符合题意;③、符合二元一次方程组的定义,故③符合题意;④、该方程组中第一个方程是二次方程,故④不符合题意.故选:.【点睛】本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.二、填空题1、5【解析】【分析】根据二元一次方程的定义(如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程)列出方程求解可得,n﹣2,然后代入代数式求值即可得.【详解】解:由题意得:,,解得:,,,故答案为:5.【点睛】题目主要考查二元一次方程的定义及求代数式的值,深刻理解二元一次方程的定义是解题关键.2、16【解析】【分析】先根据3※,2※列方程组求出m和n的值,然后再计算※※2即可.【详解】解:※,2※,,解得:,∴※,※,※※※,故答案为:16.【点睛】本题考查了新定义,解二元一次方程组,以及有理数的混合运算,根据题意求出m和n的值是解答本题的关键.3、 消元 代入消元法【解析】略4、-1【解析】【分析】根据方程的解的概念将方程的解代入原方程,然后计算求解.【详解】解:由题意可得:2×3﹣a=7,解得:a=﹣1,故答案为:﹣1.【点睛】本题考查二元一次方程的解和解一元一次方程,理解方程的解的概念是解题关键.5、5【解析】【分析】两个单项式,所含的字母相同,相同字母的指数也相同,则称这两个单项式是同类项,据此转化为解二元一次方程组,解得,再将其代入多项式中计算即可.【详解】解:∵与的和是单项式,∴与是同类项,∴,解得:.∴.故答案为:5.【点睛】本题考查同类项的定义,合并同类项,涉及简单二元一次方程组解法,代数式求值,是基础考点,难度较易,掌握相关知识是解题关键.三、解答题1、【解析】【分析】由①②相加消去y,与③组成关于x、 z的二元-次方程组, 进一步解二元一次方程组, 求得答案即可.【详解】解:①+②得,3x+z=6④③④组成二元一次方程组得,解得,代入①得,y=2,∴原方程组的解为.【点睛】本题考查三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解方程组较简单.2、 (1)小明计划购买平日票为10张,指定日票为5张(2)平日票的预售价为100元,指定日票的预售价为160元【解析】【分析】(1)设小明计划购买平日票为张,指定日票为张,由题意:平日票每张120元,指定日票每张180元,小明计划用2100元购买平日票和指定日票共15张.列出方程组,解方程组即可;(2)设平日票的预售价为元,指定日票的预售价为元,由题意:不改变原计划购买的门票种类及相应的张数,总金额可以节约300元;不改变原计划购票的总金额,那么可以购买5张平日票和10张指定日票,列出方程组,解方程组即可.(1)解:设小明计划购买平日票为张,指定日票为张,由题意得:,解得:,答:小明计划购买平日票为10张,指定日票为5张;(2)解:设平日票的预售价为元,指定日票的预售价为元,由题意得:,解得:,答:平日票的预售价为100元,指定日票的预售价为160元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,解题的关键是正确列出二元一次方程组.3、 (1)6423是“2倍和数”, 4816不是“2倍和数”,理由见解析;(2)最大值是3117,最小值是1107.【解析】【分析】(1)根据定义进行判断即可(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,进而求得的各数位上的数字之和,根据,可得能被3整除,进而求二元一次方程的整数解即可,进而列出,即可求得的最大值和最小值.(1),∴6423是“2倍和数”,,∴4816不是“2倍和数”;(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,,,,,为整数),的各数位上的数字之和为,各数位上的数字之和能被9整除,能被3整除,或,,,,的最大值是3117,最小值是1107.【点睛】本题考查了新定义,求二元一次方程的整数解,整除,理解新定义是解题的关键.4、k=4【解析】【分析】由原方程组中两个方程相减可得 与结合成新的方程组,求解的值,再求解即可.【详解】解: 方程组,①②得:③,又由题意得:④,由③和④组成新的方程组,解得:,.【点睛】本题考查的是解二元一次方程组,结合已知条件熟练的构建新的二元一次方程组是解本题的关键.5、(1);(2)【解析】【分析】(1)先去分母,然后再求解一元一次方程即可;(2)利用代入消元法进行求解二元一次方程组即可.【详解】解:(1)去分母得:,去括号得:,移项、合并同类项得:,系数化为1得:;(2)把①代入②得:,解得:,把代入①得:,∴原方程组的解为.【点睛】本题主要考查一元一次方程及二元一次方程组的解法,熟练掌握一元一次方程及二元一次方程组的解法是解题的关键.
相关试卷
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试当堂检测题,共19页。试卷主要包含了方程x+y=6的正整数解有等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试当堂检测题,共18页。试卷主要包含了下列方程是二元一次方程的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题,共19页。试卷主要包含了已知x,y满足,则x-y的值为等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)