初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题,共20页。试卷主要包含了下列各式中是二元一次方程的是,已知x,y满足,则x-y的值为,已知a,b满足方程组则的值为,下列方程是二元一次方程的是等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?”设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是( )A. B.C. D.2、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A. B. C. D.3、下列各组数中,是二元一次方程组的解的是( )A. B. C. D.4、下列各式中是二元一次方程的是( )A. B. C. D.5、已知x,y满足,则x-y的值为( )A.3 B.-3 C.5 D.06、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )A. B.C. D.7、已知a,b满足方程组则的值为( )A. B.4 C. D.28、下列方程是二元一次方程的是( )A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=19、已知是二元一次方程组的解,则m+n的值为( )A. B.5 C. D.10、李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的和单价为12元的两种笔记本(购买本数均为正整数).你认为购买方案共有( )种.A.2 B.3 C.4 D.5第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、定义新运算:规定※,若3※,2※,则※※__.2、将变形成用含的式子表示,那么_______.3、加减消元法:当二元一次方程的两个方程中,同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,从而求得方程组的解,这种解方程组的方法叫做_______,简称_______.加减消元法的条件:同一未知数的系数_______或_______.4、某次数学竞赛以60分为及格分数线,参加竞赛的所有学生的平均分为66分,而其中所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分.后来老师发现有一道题出错了,于是给每位学生的成绩加上5分;加分之后,所有成绩及格的学生的平均分变为了75分,所有成绩不及格的学生的平均分变为了59分;已知这次参赛学生人数介于15到30人之间,则参赛的学生有________人5、2021年11月2日,重庆市九龙坡区、长寿区分别新增1例新冠本土确诊.当疫情出现后,各级政府及有关部门高度重视,坚决阻断疫情传播.开州区赵家工业园区一家民营公司为了防疫需要,引进一条口罩生产线生产口罩,该产品有三种型号,通过市场调研后,按三种型号受消费者喜爱的程度分别对A型、B型、C型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个月的经营后,发现C型产品的销量占总销量的,且三种型号的总利润率为35%.第二个月,公司决定对A型产品进行升级,升级后A型产品的成本提高了25%,销量提高了20%;B型、C型产品的销量和成本均不变,且三种产品在第二个月成本基础上分别加价20%,30%,50%出售,则第二个月的总利润率为________.三、解答题(5小题,每小题10分,共计50分)1、如图,长方形ABCD中放置了9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.2、2021年是中国历史上的超级航天年,渝飞航模专卖店看准商机,8月初推出了“天问一号”和“嫦娥五号”两款模型.每个“天问一号”模型的售价是90元,每个“嫦娥五号”模型的售价是100元.(1)若8月份销售“天问一号”模型的数量比“嫦娥五号”模型数量多200个,销售两种模型的总销售额为56000元,求销售“天问一号”模型和“嫦娥五号”模型的数量各是多少?(2)该店决定从9月1日起推出“逐梦航天、仰望星空”优惠活动,9月份,每个“天问一号”模型的售价与8月份相同,销量比8月份增加a%;每个“嫦娥五号”模型的售价在8月份的基础上降价a%,销量比8月份增加a%.①用含有a的代数式填表(不需化简): 9月份的售价(元)9月份销量“天问一号”模型90 “嫦娥五号”模型 ②据统计,该店在9月份的销售总额比8月份的销售总额增加a%,求a的值.3、某货运公司有A,B两种型号的汽车,用两辆A型车和一辆B型车装满货物一次可运货10吨;用一辆A型车和两辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车和B型车,一次运完,且恰好每辆车都装满货物.(1)一辆A型车和一辆B型车都装满货物分别可运货多少吨?(2)请帮该物流公司设计可行的租车方案.4、解方程组:5、解方程组:(1)(2) -参考答案-一、单选题1、B【解析】【分析】设他买了x亩好田,y亩坏田,根据总价=单价×数量,结合购买好田坏田一共是100亩且共花费了10000元,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设他买了x亩好田,y亩坏田,∵共买好、坏田1顷(1顷=100亩).∴x+y=100;∵今有好田1亩,价值300钱;坏田7亩,价值500钱,购买100亩田共花费10000钱,∴300x+y=10000.联立两方程组成方程组得:.故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.2、D【解析】【分析】利用加减消元法逐项判断即可.【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.3、B【解析】【分析】由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.【详解】解:,得③,得④,③+④得,解得,将代入②得,解得,所以是二元一次方程组的解.故选:B.【点睛】本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.4、B【解析】【分析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;【详解】中x的次数为2,故A不符合题意;是二元一次方程,故B符合题意;中不是整式,故C不符合题意;中y的次数为2,故D不符合题意;故选B.【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.5、A【解析】【分析】用第二个方程减去第一个方程即可解答.【详解】解:∵∴3x-4y-(2x-3y)=8-5x-y=3.故选A.【点睛】本题主要考查了解二元一次方程组以及求代数式的值,掌握整体法成为解答本题的关键.6、B【解析】【分析】设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.【详解】解:设学生人数为x,长凳数为y,由题意得:,故选B.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.7、A【解析】【分析】求出方程组的解得到a与b的值,即可确定出-a-b的值.【详解】解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则-a-b=-4,故选:A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8、C【解析】【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.9、B【解析】【分析】根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.【详解】解:∵是二元一次方程组的解,∴,解得,∴m+n=5.故选:B.【点睛】本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.10、B【解析】【分析】设购买笔记本本,购买笔记本本,先建立二元一次方程,再根据均为正整数进行分析即可得.【详解】解:设购买笔记本本,购买笔记本本,由题意得:,即,因为均为正整数,所以有以下三种购买方案:①当,时,,②当,时,,③当,时,,故选:B.【点睛】本题考查了二元一次方程的应用,正确建立方程是解题关键.二、填空题1、16【解析】【分析】先根据3※,2※列方程组求出m和n的值,然后再计算※※2即可.【详解】解:※,2※,,解得:,∴※,※,※※※,故答案为:16.【点睛】本题考查了新定义,解二元一次方程组,以及有理数的混合运算,根据题意求出m和n的值是解答本题的关键.2、【解析】【分析】先移项,再将系数化为1,即可求解.【详解】解:,移项,得:, .故答案为:【点睛】本题主要考查了等式的基本性质,熟练掌握等式两边同时加上(或减去)同一个数(或整式),等式仍然成立;等式两边同时乘或除以同一个不为0的数(或整式),等式仍然成立是解题的关键.3、 加减消元法 加减法 相等 互为相反数【解析】略4、28【解析】【分析】设加分前及格人数为x人,不及格人数为y,原来不及格加分为及格的人数为n,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.【详解】解:设加分前及格人数为x人,不及格人数为y,原来不及格加分为及格的人数为n,根据题意得,,解得:,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为:28.【点睛】本题考查了二元一次方程组的应用,解题的关键是学会利用参数.构建方程组的模型解决问题.5、34%【解析】【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得;第二个月A产品成本为(1+25%)a=a,B、C的成本仍为a,A产品销量为(1+20%)x=x,B产品销量为y,C产品销量为z,则可求得第二个月的总利润率.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:,解得:,第二个月A产品的成本提高了25%,成本为:(1+25%)a=a,B、C的成本仍为a,A产品销量为(1+20%)x=x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:=0.34=34%.故答案为:34%.【点睛】本题考查了利用三元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.三、解答题1、82【解析】【详解】解:设小长方形长为x,宽为y。依题意,得解此方程组,得所以S阴影=22×(7+3×3)-10×3×9=82。答:图中阴影部分的面积为82。2、 (1)销售天问一号模型和嫦娥五号模型的数量各是400个与200个(2)①100(1- a%);400(1+a%);200(1+a%);②10【解析】【分析】(1)首先设销售“天问一号”模型和“嫦娥五号”模型的数量各x个,y个,根据销售“天问一号”模型的数量比“嫦娥五号”模型数量多200个可列出方程,由销售两种模型的总销售额为56000元可列出方程,把这两个方程组成一个二元一次方程组,解这个方程组即可得到本题答案;(2)①由9月份,每个“天问一号”模型的售价与8月份相同,销量比8月份增加a%,可得9月份“天问一号”模型的销量为400(1+a%)个;“嫦娥五号”模型的售价在8月份的基础上降价a%,,销量比8月份增加a%,可得“嫦娥五号”模型的销量为200(1+a%)个,可得“嫦娥五号”模型的售价为100(1- a%);②根据该店在9月份的销售总额比8月份的销售总额增加a%,可得90×400(1+a%)+100(1﹣a%)×200(1+a%)=(90×400+100×200)(1+a%),计算即可得出a的值.(1)解:设销售“天问一号”模型和“嫦娥五号”模型的数量各x个,y个,根据题得:解得:答:销售“天问一号”模型和“嫦娥五号”模型的数量各是400个与200个。(2)解:①∵9月份,“嫦娥五号”模型的售价在8月份的基础上降价a% ,“天问一号”模型的销量比8月份增加a%,“嫦娥五号”模型的销量比8月份增加a%,∴9月份,“天问一号”模型的销量为400(1+a%)个,“嫦娥五号”模型的销量为200(1+a%)个.故答案为:100(1- a%);400(1+a%);200(1+a%).②依题意得:90×400(1+a%)+100(1﹣a%)×200(1+a%)=(90×400+100×200)(1+a%),整理得:3a2﹣30a=0,解得:a1=10,a2=0(不合题意,舍去).答:a的值为10.【点睛】本题主要考查了二元一次方程组的应用,一元二次方程的应用等知识.3、(1)一辆A型车和一辆B型车都装满货物分别可运货3吨、4吨;(2)该物流公司共有以下三种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.【解析】【分析】(1)根据用两辆A型车和一辆B型车装满货物一次可运货10吨;用一辆A型车和两辆B型车装满货物一次可运货11吨,可以列出相应的二元一次方程组,然后求解即可;(2)根据物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且恰好每辆车都装满货物,可以得到二元一次方程,再根据辆数为正整数,即可得到相应的租车方案;【详解】解:(1)设一辆A型车和一辆B型车都装满货物分别可运货吨、吨,根据题意,得 解得答:一辆A型车和一辆B型车都装满货物分别可运货3吨、4吨; (2)设租用A型车辆和B型车辆,由题意,得. ,均为正整数,或该物流公司共有以下三种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.【点睛】本题考查二元一次方程组的应用、二元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程组和方程.4、【解析】【分析】消元求解的值,代回式解的值即可.【详解】解:得解得:将代入式得解得:∴方程组的解为.【点睛】本题考查了一元二次方程组.解题的关键在于正确的减法消元求解.5、 (1)(2)【解析】【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.(1)解:将①代入②得:3x−(2x+2)=3,解得:x=5,把x=5代入①中,解得:y=12,∴方程组的解为:;(2)①×3-②得:13y=13,解得:y=1,把y=1代入①中,解得:x=2,∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,做题的关键是根据方程特点选择合适的方法.
相关试卷
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试单元测试课后作业题,共20页。试卷主要包含了已知方程组的解满足,则的值为,已知,则等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题,共21页。试卷主要包含了有下列方程等内容,欢迎下载使用。
这是一份冀教版第六章 二元一次方程组综合与测试同步达标检测题,共22页。试卷主要包含了下列方程中,①x+y=6;②x,在一次爱心捐助活动中,八年级,已知,则,已知x,y满足,则x-y的值为等内容,欢迎下载使用。