初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题,共20页。试卷主要包含了某学校体育有场的环形跑道长,甲等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、方程组 消去x得到的方程是( )
A.y=4B.y=-14C.7y=14D.-7y=14
2、下列方程组中,二元一次方程组有( )
①;②;③;④.A.4个B.3个C.2个D.1个
3、下列方程中,是二元一次方程组的是( )
A.B.C.D.
4、某学校体育有场的环形跑道长,甲、乙分别以一定的速度练习长跑和骑自行车.同时同地出发,如果反向而行,那么他们每隔相遇一次.如果同向而行,那么每隔乙就追上甲一次,设甲的速度为,乙的速度为,则可列方程组为( )
A.B.
C.D.
5、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )
A.B.C.D.
6、用加减法将方程组中的未知数x消去后,得到的方程是( ).
A.2y=6B.8y=16C.﹣2y=6D.﹣8y=16
7、在某场CBA比赛中,某位运动员的技术统计如下表所示:
注:①表中出手投篮次数和投中次数均不包括罚球;
②总得分=两分球得分+三分球得分+罚球得分.
根据以上信息,本场比赛中该运动员投中两分球和三分球各( )个.
A.5,6B.6,5C.4,7D.7,4
8、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )
A.6或B.2或6C.2或D.2或
9、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )
A.B.C.D.
10、下列方程组中,属于二元一次方程组的是( )
A.B.
C.D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、若是方程x+ay=3的一个解,则a的值为 ______.
2、填空:端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,在这个问题中的等量关系是:(1)荷包个数+五彩绳个数=______;(2)______=72
3、解三元一次方程组的基本思路:通过“代入”或“加减”进行___,把“三元”___ “二元”,使解三元一次方程组转化为解_____,进而再转化为解_____.
4、一个两位数,个位上的数字比十位上的数字大3,将个位数字与十位数字交换位置所得到的新两位数比原两位数的3倍少1,则原两位数为_____.
5、为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文,,,对应密文,,,.例如,明文1,2,3,4对应密文5,7,14,16.当接收方收到密文9,9,24,28时,则解密得到的明文为 __.
三、解答题(5小题,每小题10分,共计50分)
1、解方程(组):
(1);
(2).
2、解方程组:.
3、对任意一个三位数(,,,a,b,c为整数),如果其个位上的数字与百位上的数字之和等于十位数上的数字,则称M为“万象数”,现将“万象数”M的个位作为十位,十位作为百位,百位作为个位,得到一个数N,并规定,我们称新数为M的“格致数”.例如154是一个“万象数”,将其个位作为十位,十位作为百位,百位作为个位,得到一个,,所以154的“格致数”为387.
(1)填空:当时,______;当时,______;
(2)求证:对任意的“万象数”M,其“格致数”都能被9整除;
(3)已知某“万象数”M的“格致数”为,既是72的倍数又是完全平方数,求出所有满足条件的“万象数”M.(完全平方数:如,,,,……,我们称0、1、4、9、16……叫完全平方数)
4、一艘轮船在相距120千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,从乙地到甲地逆流航行用10小时.(请列方程或方程组解答)
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
5、解方程组:.
-参考答案-
一、单选题
1、D
【解析】
【分析】
直接利用两式相减进而得出消去x后得到的方程.
【详解】
解:
①-②得:
-7y=14.
故答案为:-7y=14,
故选:D.
【点睛】
此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.
2、C
【解析】
【分析】
组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程.
【详解】
解:①、符合二元一次方程组的定义,故①符合题意;
②、第一个方程与第二个方程所含未知数共有3个,故②不符合题意;
③、符合二元一次方程组的定义,故③符合题意;
④、该方程组中第一个方程是二次方程,故④不符合题意.
故选:.
【点睛】
本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.
3、B
【解析】
【分析】
根据二元一次方程组的定义解答.
【详解】
解:A中含有两个未知数,含未知数的项的最高次数为2,故不符合定义;
B符合定义,故是二元一次方程组;
C中含有分式,故不符合定义;
D含有三个未知数,故不符合定义;
故选:B.
【点睛】
此题考查了二元一次方程组定义:含有两个未知数,且含有未知数的项的最高次数为2的整式方程是二元一次方程组,熟记定义是解题的关键.
4、A
【解析】
【分析】
此题中的等量关系有:①反向而行,则两人20秒共走250米;②同向而行,则50秒乙比甲多跑250米.
【详解】
解:①根据反向而行,得方程为30(x+y)=400;
②根据同向而行,得方程为80(y-x)=400.
那么列方程组,
故选:A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,注意追及问题和相遇问题不同的求解方法是解题的关键.
5、A
【解析】
【分析】
把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.
【详解】
解:把x=1代入方程组,可得,解得y=2,
将y=2代入1+my=0中,得m=,
故选:A.
【点睛】
此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.
6、D
【解析】
【分析】
根据二元一次方程组的加减消元法可直接进行求解.
【详解】
解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;
故选D.
【点睛】
本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.
7、B
【解析】
【分析】
设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
解:设本场比赛中该运动员投中两分球x个,三分球y个,
根据题意得:,
解得:.
答:设本场比赛中该运动员投中两分球6个,三分球5个.
故选:B.
【点睛】
本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.
8、A
【解析】
【分析】
设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.
【详解】
解:∵ABCD是长方形,
∴∠A=∠B=90°,
∵点E为AD的中点,AD=8cm,
∴AE=4cm,
设点Q的运动速度为x cm/s,
①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,
,
解得,,
即点Q的运动速度cm/s时能使两三角形全等.
②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,
,
解得:,
即点Q的运动速度6cm/s时能使两三角形全等.
综上所述,点Q的运动速度或6cm/s时能使两三角形全等.
故选:A.
【点睛】
本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.
9、D
【解析】
【分析】
利用加减消元法逐项判断即可.
【详解】
A. ,可以消去x,不符合题意;
B. ,可以消去y,不符合题意;
C. ,可以消去x,不符合题意;
D. ,无法消元,符合题意;
故选:D
【点睛】
本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.
10、C
【解析】
【分析】
根据二元一次方程组的基本形式及特点进行判断,即:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.
【详解】
解:、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意
、该方程组中的第一个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;
、该方程组符合二元一次方程组的定义,故本选项符合题意;
、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;
故选:.
【点睛】
本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.
二、填空题
1、
【解析】
【分析】
将代入方程可得一个关于的一元一次方程,解方程即可得.
【详解】
解:由题意,将代入得:,
解得,
故答案为:.
【点睛】
本题考查了二元一次方程的解、一元一次方程,掌握理解二元一次方程的解的定义(一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解)是解题关键.
2、 20 荷包钱数+五彩绳钱数
【解析】
【分析】
(1)根据题意即得出荷包个数+五彩绳个数就是王老师买荷包和五彩绳的总个数,即得出答案;
(2)根据王老师用了72元钱买荷包和五彩绳,即可直接填空.
【详解】
(1)根据题意可知荷包个数+五彩绳个数就是王老师买荷包和五彩绳的总个数,即为20个.
故答案为:20.
(2)根据题意王老师用了72元钱买荷包和五彩绳,
所以荷包钱数+五彩绳钱数=72.
故答案为:荷包钱数+五彩绳钱数.
【点睛】
本题考查一元一次方程的实际应用.找准等量关系是解答本题的关键.
3、 消元 化为 二元一次方程组 一元一次方程
【解析】
【分析】
利用解三元一次方程组的基本思想-消元的思想,判断即可得到结果.
【详解】
解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.
故答案为:消元;化为;二元一次方程组;一元一次方程
【点睛】
此题考查了解三元一次方程组的思路,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
4、14
【解析】
略
5、5,2,5,7
【解析】
【分析】
设解密得到的明文为,,,,加密规则得出方程组,求出,,,的值即可.
【详解】
解:设明文为,,,,
由题意得:,
解得:,
则得到的明文为5,2,5,7.
故答案为:5,2,5,7.
【点睛】
本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
三、解答题
1、 (1);
(2).
【解析】
【分析】
(1)去分母,去括号,移项合并,系数化1即可;
(2)先标号,将①整理得,利用加减消元法②×2+③得,求出,再代入②得即可.
(1)
解:,
去分母得:,
去括号得:,
移项合并得:,
系数化1得:;
(2)
解:,
将①整理得,
②×2+③得,
解得,
把代入②得,
.
【点睛】
本题考查一元一次方程的解法与二元一次方程组的解法,掌握一元一次方程与二元一次方程组的解法和步骤是解题关键.
2、
【解析】
【分析】
观察方程组各个含有未知数的项的系数,可加减消元法解二元一次方程组.
【详解】
解:
,得:
,得:
∴
将代入①得:
∴该方程组的解为
【点睛】
本题考查了二元一次方程组的解法,熟练掌握代入消元法或加减消元法解二元一次方程组是解题的关键.
3、 (1)
(2)证明见解析
(3)或.
【解析】
【分析】
(1)根据新定义分别求解即可;
(2)设“万象数”为 则其为 则再计算其“格致数”,再利用乘法的分配律进行变形即可证明结论;
(3)由是的倍数,可得是的倍数,结合的范围可得 从而得到或或或或 再求解方程符合条件的解,可得的值,结合是完全平方数,从而可得答案.
(1)
解:由新定义可得:
当时,
故答案为:
(2)
解:设“万象数”为 则其为
则
而
所以其“格致数”
所以其“格致数”都能被9整除.
(3)
解:是的倍数,
是的倍数,
是的倍数,
,,,a,b,c为整数,
或或或或
或或或或或
而,
的值为:或或或或或
是完全平方数,
的值为:或.
【点睛】
本题考查的是新定义运算的理解与运用,同时考查了二元一次方程的非负整数解问题,理解新定义,逐步分析与运算是解本题的关键.
4、 (1)静水中的速度是16千米/小时,水流速度是4千米/小时
(2)75千米
【解析】
【分析】
(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,根据路程=速度×时间,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.
【小题1】
解:设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,
依题意,得:,
解得:,
答:该轮船在静水中的速度是16千米/小时,水流速度是4千米/小时.
【小题2】
设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,
依题意,得:,
解得:a=75,
答:甲、丙两地相距75千米.
【点睛】
本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.
5、
【解析】
【分析】
由①②相加消去y,与③组成关于x、 z的二元-次方程组, 进一步解二元一次方程组, 求得答案即可.
【详解】
解:
①+②得,3x+z=6④
③④组成二元一次方程组得,
解得,
代入①得,y=2,
∴原方程组的解为.
【点睛】
本题考查三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解方程组较简单.
技术
上场时间(分钟)
出手投篮(次)
投中(次)
罚球得分(分)
篮板(个)
防攻(次)
个人总得分(分)
数据
38
27
11
6
3
4
33
相关试卷
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课堂检测,共17页。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试当堂检测题,共20页。试卷主要包含了已知二元一次方程组则,若关于x,如图,9个大小等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共20页。试卷主要包含了下列方程是二元一次方程的是,已知是方程的解,则k的值为,若方程组的解为,则方程组的解为等内容,欢迎下载使用。