冀教版七年级下册第六章 二元一次方程组综合与测试当堂达标检测题
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共18页。试卷主要包含了学校计划用200元钱购买,二元一次方程组的解是,若方程组的解为,则方程组的解为等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、已知是二元一次方程,则的值为( )
A.B.1C.D.2
2、已知x=3,y=-2是方程2x+my=8的一个解,那么m的值是( )
A.-1B.1C.-2D.2
3、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有人,该物品价值元,则根据题意可列方程组为( )
A.B.C.D.
4、学校计划用200元钱购买、两种奖品(两种都要买),种每个15元,种每个25元,在钱全部用完的情况下,有多少种购买方案( )
A.2种B.3种C.4种D.5种
5、下列各组数值是二元一次方程的解是( )
A.B.C.D.
6、二元一次方程组的解是( )
A.B.C.D.
7、下列方程组中,属于二元一次方程组的是( )
A.B.
C.D.
8、若方程组的解为,则方程组的解为( )
A.B.
C.D.
9、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )
A.48B.52C.58D.64
10、已知a,b满足方程组则的值为( )
A.B.4C.D.2
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、若x2a﹣3+yb+2=3是二元一次方程,则a﹣b=__.
2、已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=_____.
3、方程组的解是:_____.
4、若关于x,y的二元一次方程组无解,则______.
5、现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则可列方程组为___.
三、解答题(5小题,每小题10分,共计50分)
1、某商店出售两种规格口罩,2大盒、4小盒共装80个口罩;3大盒、5小盒共装110个口罩,大盒与小盒每盒各装多少个口罩?
2、为了做好学校疫情防控工作,某中学开学前需备足防疫物资,准备购买N95口罩(单位:只)和医用外科口罩(单位:包)若干.根据标价,已知购买10只N95口罩和9包医用外科口罩共需236元,购买一只N95口罩的费用是购买一包医用外科口罩费用的5倍.
(1)求一只N95口罩和一包医用外科口罩的标价各是多少元?
(2)市场上现有甲、乙两所医疗机构对该中学的采购给出如下的优惠方案:甲医疗机构:购买的口罩按标价结算,但每购买一只N95口罩赠送一包医用外科口罩;乙医疗机构:购买的口罩全部按标价打九折结算.若该中学准备购买1000只N95口罩和6000包医用外科口罩,考虑配送成本等其他因素,只能一次性从其中一家采购,问选择哪所医疗机构更省钱?
3、解方程组:
4、解方程组
(1)
(2)
5、解方程组:.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.
【详解】
解:∵是二元一次方程,
∴ ,且 ,
解得: .
故选:C
【点睛】
本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.
2、A
【解析】
【分析】
根据题意把x=3,y=-2代入方程2x+my=8,可得关于m的一元一次方程,解方程即可求出m的值.
【详解】
解:把x=3,y=-2代入方程2x+my=8,可得:
,解得:.
故选:A.
【点睛】
本题考查二元一次方程的解的定义以及解一元一次方程,注意掌握一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
3、A
【解析】
【分析】
根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.
【详解】
解:设有x人,物品价值y元,由题意得:
故选:A.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
4、A
【解析】
【分析】
设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为非负整数求出解即可得.
【详解】
解:设购买了A种奖品x个,B种奖品y个,
根据题意得:,
化简整理得:,得,
∵x,y为非负整数,
∴,,,
∴购买方案为:
方案1:购买了A种奖品0个,B种奖品8个;
方案2:购买了A种奖品5个,B种奖品5个;
方案3:购买了A种奖品10个,B种奖品2个;
∵两种奖品都要买,
∴方案1不符合题意,舍去,
综上可得:有两种购买方案.
故选:A.
【点睛】
本题考查了二元一次方程的应用,根据题意列出二元一次方程,然后根据解为非负整数确定未知数的值是解题关键.
5、D
【解析】
【分析】
将选项中的解分别代入方程,使方程成立的即为所求.
【详解】
解:A.代入方程,,不满足题意;
B.代入方程,,不满足题意;
C.代入方程,,不满足题意;
D.代入方程,,满足题意;
故选:D.
【点睛】
本题考查了二元一次方程的解,熟练掌握二元一次方程的解与二元一次方程的关系是解题的关键.
6、C
【解析】
【分析】
根据加减消元法,由①+②得出11x=33,求出x,再把x=3代入①求出y即可.
【详解】
解:,
由①+②,得11x=33,
解得:x=3,
把x=3代入①,得9+2y=13,
解得:y=2,
所以方程组的解是,
故选:C.
【点睛】
本题考查了解二元一次方程组,解题的关键是掌握加减消元法解方程组.
7、C
【解析】
【分析】
根据二元一次方程组的基本形式及特点进行判断,即:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.
【详解】
解:、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意
、该方程组中的第一个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;
、该方程组符合二元一次方程组的定义,故本选项符合题意;
、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;
故选:.
【点睛】
本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.
8、B
【解析】
【分析】
由整体思想可得,求出x、y即可.
【详解】
解:∵方程组的解为,
∴方程组的解,
∴;
故选:B.
【点睛】
本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.
9、B
【解析】
【分析】
设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.
【详解】
设小长方形的宽为,长为,
由图可得:,
得:,
把代入①得:,
大长方形的宽为:,
大长方形的面积为:,
7个小长方形的面积为:,
阴影部分的面积为:.
故选:B.
【点睛】
本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.
10、A
【解析】
【分析】
求出方程组的解得到a与b的值,即可确定出-a-b的值.
【详解】
解:,
①+②×5得:16a=32,即a=2,
把a=2代入①得:b=2,
则-a-b=-4,
故选:A.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
二、填空题
1、3
【解析】
【分析】
先根据二元一次方程的定义求出a、b的值,然后代入a﹣b计算即可.
【详解】
解:∵x2a﹣3+yb+2=3是二元一次方程,
∴2a﹣3=1,b+2=1,
∴a=2,b=﹣1,
则a﹣b=2﹣(﹣1)=2+1=3.
故答案为:3.
【点睛】
本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.
2、##0.4
【解析】
【分析】
根据关键语“等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立”,只要让等式两边x的系数和常数分别相等即可列出方程组求解.
【详解】
解:(2A﹣7B)x+(3A﹣8B)=8x+10,
∴,
解得:,
则A+B=,
故答案为:.
【点睛】
本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
3、
【解析】
【分析】
②×3-①求出x的值,再把x的值代入②求出y的值即可.
【详解】
解:
②×3-①,得5x=28
∴x=
把x=代入②得,
∴
∴方程组的解为
故答案为:
【点睛】
本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.
4、−
【解析】
【分析】
根据加减消元法消去y,得到x,因为方程组无解,所以令分母等于0,使这个解无意义,则原方程组无解.
【详解】
解:,
①×2得:2mx+6y=18③,
②×3得:3x−6y=3④,
③+④得:(2m+3)x=21,
∴x=,
∵方程组无解,
∴2m+3=0,
∴m=−.
故答案为:−.
【点睛】
本题考查了二元一次方程组的解,解题的关键是利用消元法求得x的值.
5、
【解析】
【分析】
根据题意可得等量关系:绳索长=竿长+5尺,竿长=绳索长的一半+5尺,根据等量关系可得方程组.
【详解】
解:设绳索长尺,竿长尺,由题意得:
,
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.
三、解答题
1、大盒每盒装20个口罩,小盒每盒装10个口罩.
【解析】
【分析】
设大盒每盒装个口罩,小盒每盒装个口罩,根据“2大盒、4小盒共装80个口罩;3大盒、5小盒共装110个口罩”建立方程组,解方程组即可得.
【详解】
解:设大盒每盒装个口罩,小盒每盒装个口罩,
由题意得:,
解得,符合题意,
答:大盒每盒装20个口罩,小盒每盒装10个口罩.
【点睛】
本题考查了二元一次方程组的应用,正确建立方程组是解题关键.
2、(1)一只N95口罩20元,一包医用外科口罩4元;(2)选择乙医疗机构更省钱
【解析】
【分析】
(1)设一只N95口罩x元,一包医用外科口罩y元,根据购买10只N95口罩和9包医用外科口罩共需236元,购买一只N95口罩的费用是购买一包医用外科口罩费用的5倍列出二元一次方程组即可;
(2)分别算出两个机构的费用,比较大小即可.
【详解】
(1)设一只N95口罩x元,一包医用外科口罩y元,根据题意得,
,解得:,
所以一只N95口罩20元,一包医用外科口罩4元;
(2)单独去甲医疗机构买总费用为:(元);
单独去乙医疗机构买总费用为:(元);
,
∴选择乙医疗机构更省钱.
【点睛】
本题考查了二元一次方程组的应用,解题关键是熟练掌握题目中的数量关系,找到等量关系列出方程.
3、
【解析】
【详解】
解:,
由①+③,②+2×③消去z得
解得
代入①得:z=3.
即原方程组的解为
4、 (1)
(2)
【解析】
【分析】
(1)利用加减消元法,即可求解;
(2)利用加减消元法,即可求解.
(1)
,
①×2,得2x﹣2y=8③,
③+②,得6x=7,
解得,
将代入①,得y=﹣,
∴方程组的解为;
(2)
①﹣②得,,
解得,y=9,
将y=9代入①,得x=6,
∴方程组的解为.
【点睛】
本题考查了二元一次方程组的解法,准确消元把二元一次方程组变为一元一次方程是解决问题的关键.
5、.
【解析】
【分析】
根据加减法解一元二次方程即可.
【详解】
解:
①×2+②得:
解得
将代入到①得
方程组的解为:
【点睛】
本题考查了解二元一次方程组,掌握解二元一次方程组是解题的关键.
相关试卷
这是一份数学七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共18页。试卷主要包含了有下列方程,已知x,y满足,则x-y的值为,《九章算术》中记载,若关于x等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步练习题,共19页。试卷主要包含了二元一次方程的解可以是等内容,欢迎下载使用。
这是一份初中数学第六章 二元一次方程组综合与测试课时作业,共20页。试卷主要包含了用代入消元法解关于等内容,欢迎下载使用。