![精品试题冀教版七年级下册第六章二元一次方程组章节练习试卷(精选含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12717148/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版七年级下册第六章二元一次方程组章节练习试卷(精选含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12717148/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版七年级下册第六章二元一次方程组章节练习试卷(精选含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12717148/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试习题
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试习题,共20页。试卷主要包含了若关于x,若方程组的解为,则方程组的解为,已知是二元一次方程,则的值为,若是方程组的解,则的值为等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有人,该物品价值元,则根据题意可列方程组为( )
A.B.C.D.
2、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺!设绳索长x尺,竿长y尺,则符合题意的方程组是( )
A.B.C.D.
3、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )
A.4B.3C.2D.1
4、若关于x、y的二元一次方程的解,也是方程的解,则m的值为( )
A.-3B.-2C.2D.无法计算
5、若方程组的解为,则方程组的解为( )
A.B.
C.D.
6、已知是二元一次方程,则的值为( )
A.B.1C.D.2
7、下列各方程中,是二元一次方程的是( )
A.=y+5xB.3x+1=2xyC.x=y2+1D.x+y=1
8、已知是二元一次方程组的解,则m+n的值为( )
A.B.5C.D.
9、若是方程组的解,则的值为( )
A.16B.-1C.-16D.1
10、观察下列方程其中是二元一次方程是( )
A.5x﹣y=35B.xy=16
C.2x2﹣1=0D.3z﹣2(z+1)=6
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、新春佳节享团圆,吉祥如意在虎年!新年将至,某超市第一周销售吉祥、如意、团圆三种年货礼包的数量之比为,吉祥、如意、团圆三种年货礼包的单价之比为.第二周由于人工成本的增加,超市管理人员把如意礼包的单价在第一周的基础上上调,吉祥、团圆礼包的单价保持不变,预计第二周三种年货礼包的销售总额比第一周有所增加,其中团圆礼包增加的销售额占第二周总销售额,如意礼包和团圆礼包的销售额之比是,三种礼包的数量之和比第一周增加,则团圆礼包第一周与第二周的数量之比为_____________.
2、已知,则的值是 __.
3、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,则点A的坐标是__________.
4、将方程2x+y﹣1=0变形为用含有y的式子表示x,则x=__________________.
5、中国的元旦,据传说起于三皇五帝之一的颛顼,距今已有3000多年的历史.“元旦”一词最早出现于《晋书》.“元旦节”前夕,某超市分别以每袋30元、20元、10元的价格购进腊排骨、腊香肠、腊肉各若干,由于该食品均是真空包装,只能成袋出售,每袋的售价分别为50元、40元、20元,元旦节当天卖出三种年货若干袋,元月2日腊排骨卖出的数量第一天腊排骨数量的3倍,腊香肠卖出的数量是第一天腊香肠数量的2倍,腊肉卖出的数量是第一天腊肉数量的4倍;元月3日卖出的腊排骨的数量是这三天卖出腊排骨的总数量的,卖出腊香肠的数量是前两天腊香肠数量和,卖出腊肉的数量是第二天腊肉数量的一半.若第三天三种年货的销售总额比第一天三种年货销售总额多1600元,这三天三种年货的销售总额为9350元,则这三天所售出的三种年货的总利润为______元.
三、解答题(5小题,每小题10分,共计50分)
1、用适当的方法解下列方程组:.
2、(1)解方程:;
(2)解方程组:
3、解方程组
(1)
(2)
4、某货运公司有A,B两种型号的汽车,用两辆A型车和一辆B型车装满货物一次可运货10吨;用一辆A型车和两辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车和B型车,一次运完,且恰好每辆车都装满货物.
(1)一辆A型车和一辆B型车都装满货物分别可运货多少吨?
(2)请帮该物流公司设计可行的租车方案.
5、解方程组:.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.
【详解】
解:设有x人,物品价值y元,由题意得:
故选:A.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
2、A
【解析】
【分析】
根据题意可列出等量关系:绳长=竿长+5尺,竿长=绳长的一半+5尺,据此列方程即可.
【详解】
解:设绳索长x尺,竿长y尺,则
故选:A.
【点睛】
本题考查由实际问题抽象出二元一次方程组,关键是正确理解题意,找出等量关系,由等量关系列方程.
3、C
【解析】
【分析】
先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.
【详解】
解:由题意得:,
联立,
由①②得:,
解得,
将代入①得:,
解得,
将代入方程得:,
解得,
故选:C.
【点睛】
本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.
4、C
【解析】
【分析】
将m看作已知数值,利用加减消元法求出方程组的解,然后代入求解即可得.
【详解】
解:,
得:,
解得:,
将代入①可得:3m+2y=5m,
解得:,
∴方程组的解为:,
∵方程组的解也是方程的解,
代入可得,
解得,
故选:C.
【点睛】
题目主要考查解二元一次方程组求参数,熟练掌握解二元一次方程组的方法是解题关键.
5、B
【解析】
【分析】
由整体思想可得,求出x、y即可.
【详解】
解:∵方程组的解为,
∴方程组的解,
∴;
故选:B.
【点睛】
本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.
6、C
【解析】
【分析】
根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.
【详解】
解:∵是二元一次方程,
∴ ,且 ,
解得: .
故选:C
【点睛】
本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.
7、D
【解析】
【分析】
根据二元一次方程的定义逐一排除即可.
【详解】
解:A、=y+5x不是二元一次方程,因为不是整式方程;
B、3x+1=2xy不是二元一次方程,因为未知数的最高项的次数为2;
C、x=y2+1不是二元一次方程,因为未知数的最高项的次数为2;
D、x+y=1是二元一次方程.
故选:D.
【点睛】
此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
8、B
【解析】
【分析】
根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.
【详解】
解:∵是二元一次方程组的解,
∴,
解得,
∴m+n=5.
故选:B.
【点睛】
本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.
9、C
【解析】
【分析】
把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.
【详解】
解:把代入方程组得,
两式相加得;
两式相差得:,
∴,
故选C.
【点睛】
本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
10、A
【解析】
【分析】
根据二元一次方程的定义解答即可.
【详解】
解:A、该方程符合二元一次方程的定义,符合题意.
B、该方程是二元二次方程,不符合题意.
C、该方程是一元二次方程,不符合题意.
D、该方程是一元一次方程,不符合题意.
故选:A.
【点睛】
本题主要考查了二元一次方程的定义,含有两个未知数且每个未知数的次数均为1的方程是二元一次方程.
二、填空题
1、4:5
【解析】
【分析】
设某超市第一周销售吉祥、如意、团圆三种年货礼包的数量为3a,a,4a,三种年货礼包的单价为b,5b,2b,则第一周销售额可得;设第二周如意年货礼包的销售数量为y,由于第二周礼包的单价在第一周的基础上上调,所以第二周礼包的单价为6y,销售额为6by,则团圆礼包第二周销售额为8by,利用已知条件列出方程求解即可
【详解】
解:设某超市第一周销售吉祥、如意、团圆三种年货礼包的数量为3a,a,4a,三种年货礼包的单价为b,5b,2b,则第二周三种年货的售价为:b,5b×1.2=6b,2b;
设第二周三种年货的销量分别为x,y,z,
∵如意礼包和团圆礼包的销售额之比是,
∴
∴
第二周团圆包增加的销售额为:
∵团圆礼包增加的销售额占第二周总销售额,
∴
∴
∵三种礼包的数量之和比第一周增加,
∴
∴
∴
∴团圆礼包第一周与第二周的数量之比为
故答案为:4:5
【点睛】
本题考查三元一次方程的应用;理解题意,能够通过所给的量之间的关系列出正确的方程是解题的关键.
2、
【解析】
【分析】
根据乘方和绝对值的性质,得二元一次方程组并求解,即可得到x和y的值,结合代数式的性质计算,即可得到答案.
【详解】
,
,,即,
将代入到,得:
去括号,得:
移项并合并同类项,得:
将代入到,得
∴
,
故答案为:.
【点睛】
本题考查了乘方、绝对值、二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.
3、(-3,9)
【解析】
【分析】
设长方形纸片的长为x,宽为y,根据点B的坐标,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再结合点A的位置,即可得出点A的坐标.
【详解】
解:设长方形纸片的长为x,宽为y,
依题意,得:,
解得:,
∴x-y=3,x+2y=9,
∴点A的坐标为(-3,6).
故答案为:(-3,9).
【点睛】
本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是解题的关键.
4、
【解析】
【分析】
将y看作已知数求出x即可.
【详解】
解:2x+y﹣1=0
2x=1-y,
x= .
故答案为:.
【点睛】
本题考查了二元一次方程的解法,先用含其中一个未知数的代数式表示另一个未知数,本题即是将y看作已知数求出x.
5、4300
【解析】
【分析】
设元旦节当天三种年货腊排骨、腊香肠、腊肉的销售数量分别是x、y、z(x、y、z均为正整数)袋,则三天的销售数量如下表:单位(袋)
再列方程组,解方程组即可得到答案.
【详解】
解:设元旦节当天三种年货腊排骨、腊香肠、腊肉的销售数量分别是x、y、z(x、y、z均为正整数)袋,则
,
整理得,
利用代入消元,得,
所有当,则 ,
即
所有,,,
所有总利润为(元).
故答案为:4300
【点睛】
本题考查的是三元一次方程组的应用,方程组的正整数解问题,设出适当的未知数表示需要的量再确定相等关系列方程是解本题的关键.
三、解答题
1、
【解析】
【分析】
根据题意利用加减消元法,①×3+②,消去未知数y,求出未知数x的值,再代入其中一个方程求出y的值即可.
【详解】
解:,
①②,得,解得,
把代入①,得,解得.
故方程组的解为.
【点睛】
本题考查解二元一次方程组,能把二元一次方程组转化成一元一次方程是解答此题的关键.
2、(1) ;(2)
【解析】
【分析】
(1)先去分母,再去括号,然后移项合并同类项,即可求解;
(2)由①+②×2可得 ,再代入②,即可求解.
【详解】
解:
去分母得: ,
去括号得: ,
移项合并同类项得: ,
解得: ;
(2)
由①+②×2得: ,
解得: ,
把代入②得: ,
解得: ,
∴原方程组的解为 .
【点睛】
本题主要考查了解一元一次方程和解二元一次方程组,熟练掌握一元一次方程和二元一次方程组的解法是解题的关键.
3、 (1)
(2)
【解析】
【分析】
(1)利用加减消元法解方程组即可;
(2)利用代入消元法解方程组即可.
(1)
解:
把①代入②得:,即,解得,
把代入到①中得:,
∴方程组的解为:;
(2)
解: ,
用①×2-②得:,解得,
把代入到①中得:,解得
∴方程组的解为:.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟知解二元一次方程组的方法.
4、(1)一辆A型车和一辆B型车都装满货物分别可运货3吨、4吨;(2)该物流公司共有以下三种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.
【解析】
【分析】
(1)根据用两辆A型车和一辆B型车装满货物一次可运货10吨;用一辆A型车和两辆B型车装满货物一次可运货11吨,可以列出相应的二元一次方程组,然后求解即可;
(2)根据物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且恰好每辆车都装满货物,可以得到二元一次方程,再根据辆数为正整数,即可得到相应的租车方案;
【详解】
解:(1)设一辆A型车和一辆B型车都装满货物分别可运货吨、吨,根据题意,得 解得
答:一辆A型车和一辆B型车都装满货物分别可运货3吨、4吨;
(2)设租用A型车辆和B型车辆,由题意,得.
,均为正整数,
或
该物流公司共有以下三种租车方案,
方案一:租A型车1辆,B型车7辆;
方案二:租A型车5辆,B型车4辆;
方案三:租A型车9辆,B型车1辆.
【点睛】
本题考查二元一次方程组的应用、二元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程组和方程.
5、
【解析】
【分析】
直接利用加减消元法解方程组求解即可;
【详解】
解:,
①+②×2,得7x=10,
解得:x=,
把x=代入②,得+y=2,
解得:y=,
所以方程组的解是.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
腊排骨
腊香肠
腊肉
元月1号
元月2号
元月3号
相关试卷
这是一份初中冀教版第六章 二元一次方程组综合与测试课后测评,共20页。试卷主要包含了学校计划用200元钱购买,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。
这是一份七年级下册第六章 二元一次方程组综合与测试复习练习题,共19页。试卷主要包含了已知a,b满足方程组则的值为,二元一次方程组的解是等内容,欢迎下载使用。
这是一份2020-2021学年第六章 二元一次方程组综合与测试精练,共21页。试卷主要包含了用代入消元法解关于等内容,欢迎下载使用。