数学七年级下册第六章 二元一次方程组综合与测试课时练习
展开
这是一份数学七年级下册第六章 二元一次方程组综合与测试课时练习,共17页。试卷主要包含了二元一次方程的解可以是,下列各式中是二元一次方程的是,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=82、在下列各组数中,是方程组的解的是( )A. B. C. D.3、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为( ).A. B.C. D.4、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想5、二元一次方程的解可以是( )A. B. C. D.6、下列各式中是二元一次方程的是( )A. B. C. D.7、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )A.1个 B.2个 C.3个 D.4个8、己知是关于,的二元一次方程的解,则的值是( )A.3 B. C.2 D.9、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )A. B. C. D.10、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )A.48 B.52 C.58 D.64第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、若关于x、y 的二元一次方程组的解满足x+y=1,则m的值为__________.2、如果将方程变形为用含的式子表示,那么_______.3、使二元一次方程两边____的两个未知数的值,叫二元一次方程的一组解.4、若是方程kx﹣3y=1的一个解,则k=_____.5、已知,则的值是 __.三、解答题(5小题,每小题10分,共计50分)1、例3.林芳、向民、艳君三位同学去商店买文具用品,林芳说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”向民说:“我买了2支水笔,3本笔记本,10本练习本共用了20元,”艳君说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.2、解方程组:(1)(2)3、用适当的方法解下列方程组.4、解方程(组):(1);(2).5、六年级学生若干人报名参加课外活动小组,男女生人数之比为4:3,后来又报了15名女生,这时女生人数恰好是男生人数的2倍,求最初报名时男生与女生各有多少人? -参考答案-一、单选题1、A【解析】【分析】把代入求出;再把代入求出数■即可.【详解】解:把代入得,,解得,;把代入得,,解得,;故选A【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.2、D【解析】【分析】根据二元一次方程组的解可把选项逐一代入求解即可.【详解】解:∵∴把代入方程①得:,代入②得:,所以该解不是方程组的解,故A选项不符合题意;把代入方程①得:,代入②得:,所以该解不是方程组的解,故B选项不符合题意;把代入方程①得:,代入②得:,所以该解不是方程组的解,故C选项不符合题意;把代入方程①得:,代入②得:,所以该解是方程组的解,故D选项符合题意;故选D.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.3、B【解析】【分析】设绳子长x尺,长木长y尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x,y的二元一次方程组.【详解】解:设绳子长x尺,长木长y尺,依题意,得:,故选:B.【点睛】本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.4、A【解析】【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.5、A【解析】【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;故选A.【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.6、B【解析】【分析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;【详解】中x的次数为2,故A不符合题意;是二元一次方程,故B符合题意;中不是整式,故C不符合题意;中y的次数为2,故D不符合题意;故选B.【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.7、A【解析】【分析】含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.【详解】解:①x+y=6是二元一次方程;②x(x+y)=2,即不是二元一次方程;③3x-y=z+1是三元一次方程;④m+=7不是二元一次方程;故符合题意的有:①,故选A【点睛】本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.8、A【解析】【分析】将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.9、A【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.【详解】解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:.故选:A.【点睛】此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.10、B【解析】【分析】设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.【详解】设小长方形的宽为,长为,由图可得:,得:,把代入①得:,大长方形的宽为:,大长方形的面积为:,7个小长方形的面积为:,阴影部分的面积为:.故选:B.【点睛】本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.二、填空题1、﹣1【解析】【分析】由①+②,得: ,从而得到 ,再由x+y=1,可得到 ,即可求解.【详解】解:,由①+②,得: ,∴ ,∵x+y=1,∴ ,解得: .故答案为:-1【点睛】本题主要考查了解二元一次方程和二元一次方程的解,由①+②得到 是解题的关键.2、【解析】【分析】先移项,再系数化为1即可.【详解】解:移项,得:,方程两边同时除以,得:,故答案为:.【点睛】本题考查了解二元一次方程,将x看作常数,把y看做未知数,灵活应用等式的性质求解是关键.3、相等【解析】略4、﹣5【解析】【分析】根据方程的解的定义,将代入方程kx−3y=1,可得−2k−9=1,故k=−5.【详解】解:由题意得:﹣2k﹣3×3=1.∴k=﹣5.故答案为:﹣5.【点睛】本题属于简单题,主要考查方程的解的定义,即使得方程成立的未知数的值.5、【解析】【分析】根据乘方和绝对值的性质,得二元一次方程组并求解,即可得到x和y的值,结合代数式的性质计算,即可得到答案.【详解】,,,即,将代入到,得:去括号,得:移项并合并同类项,得:将代入到,得∴,故答案为:.【点睛】本题考查了乘方、绝对值、二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.三、解答题1、笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.【解析】【分析】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,根据林芳、向民、艳君三个人的话可以建立三个方程,从而构成三元一次方程组,求出其解即可.【详解】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,由题意得 解得 答:笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时找准等量关系建立方程是关键.2、 (1)(2)【解析】【分析】(1) 利用加减消元法求出解即可;(2) 方程组整理后,利用加减消元法求出解即可.(1)解:,①+②得,3x=9,即x=3,把x=3代入①得,y=2,则方程组的解为;(2)解:方程组整理得:,①×2+②得,y=5,把y=5代入①得,x=4,则方程组的解为【点睛】本题考查二元一次方程组的解法.关键是熟练掌握代入消元法和加减消元法的应用.3、【解析】【分析】将代入消元求解的值,进而求出的值.【详解】解:由①得,③将③代入②得,解得把代入③,得∴方程组的解为.【点睛】本题考查了解二元一次方程组.解题的关键在于将二元一次方程组转化成一元一次方程.4、(1);(2)【解析】【分析】(1)先去分母,然后再求解一元一次方程即可;(2)利用代入消元法进行求解二元一次方程组即可.【详解】解:(1)去分母得:,去括号得:,移项、合并同类项得:,系数化为1得:;(2)把①代入②得:,解得:,把代入①得:,∴原方程组的解为.【点睛】本题主要考查一元一次方程及二元一次方程组的解法,熟练掌握一元一次方程及二元一次方程组的解法是解题的关键.5、最初报名时男生有12人,女生有9人.【解析】【分析】设最初报名时女生有x人,男生有y人,由题意:男女生人数之比为4:3,后来又报了15名女生,这时女生人数恰好是男生人数的2倍,列出方程组,解之即可.【详解】解:设最初报名时女生有x人,男生有y人,依题意,得:,解得:,答:最初报名时男生有12人,女生有9人.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了已知,则,若是方程组的解,则的值为等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课时练习,共19页。试卷主要包含了有下列方程组,《孙子算经》记载等内容,欢迎下载使用。
这是一份数学七年级下册第六章 二元一次方程组综合与测试课后复习题,共19页。试卷主要包含了若是方程的解,则等于,已知a,b满足方程组则的值为,已知是方程的解,则k的值为等内容,欢迎下载使用。