初中数学第六章 二元一次方程组综合与测试课堂检测
展开冀教版七年级下册第六章二元一次方程组专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的和单价为12元的两种笔记本(购买本数均为正整数).你认为购买方案共有( )种.A.2 B.3 C.4 D.5
2、已知是方程x﹣ay=3的一个解,那么a的值为( )
A.﹣1 B.1 C.﹣3 D.3
3、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )
A.9 B.7 C.5 D.3
4、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )
A. B. C. D.
5、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )
A.1个 B.2个 C.3个 D.4个
6、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )
A.3种 B.4种 C.5种 D.6种
7、如图,分别用火柴棍连续搭建等边三角形和正六边形,公共边只用一根火柴棍.如果搭建等边三角形和正六边形共用了2018根火柴,并且等边三角形的个数比正六边形的个数多7,那么连续搭建的等边三角形的个数是( )
A.291 B.292 C.293 D.294
8、现有一批脐橙运往外地销售,A型车载满一次可运3吨,B型车载满一次可运4吨,现有脐橙31吨,计划同时租用A,B两种车型,一次运完且恰好每辆车都载满脐橙,租车方案共有( )
A.2种 B.3种 C.4种 D.5种
9、已知关于x,y的方程组的唯一解是,则关于m,n的方程组的解是( )
A. B. C. D.
10、已知是二元一次方程的一组解,则m的值是( )
A. B.3 C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、若,则的值为______.
2、方程组的解是:_____.
3、如果与的和是单项式, 则________ .
4、某食品店推出两款袋装营养早餐配料,甲种每袋装有10克花生,10克芝麻,10克核桃;乙种每袋装有20克花生,5克芝麻,5克核桃.甲、乙两款袋装营养早餐配料每袋成本价分别为袋中花生、芝麻、核桃的成本价之和.已知花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%,乙款营养早餐配料每袋利润率为20%.若这两款袋装营养早餐配料的销售利润率达到24%,则该公司销售甲、乙两款袋装营养早餐配料的数量之比是______.
5、解三元一次方程组的基本思路:通过“代入”或“加减”进行___,把“三元”___ “二元”,使解三元一次方程组转化为解_____,进而再转化为解_____.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:
(1)
(2)
2、解方程组:.
3、对于任意一个四位数,若千位上的数字与百位上的数字之和是十位上的数字与个位上的数字之和的2倍,则称是“2倍和数”.如,因为,所以3504是“2倍和数”;,因为,所以6824不是“2倍和数”.
(1)判断6423,4816是否为“2倍和数”?并说明理由;
(2)对于“2倍和数”,当百位上的数字是个位上的数字的3倍,且各数位上的数字之和能被9整除时,记.求的最大值和最小值.
4、对于一个各个数位上的数字均不为零的三位自然数,若的十位数字等于百位数字与个位数字之和,则称这个自然数为“三峡数”.当三位自然数为“三峡数”时,交换的百位数字和个位数字后会得到一个三位自然数,规定.例如:当时,因为,所以583是“三峡数”;此时,则.
(1)判断341和153是否是“二峡数”?并说明理由;
(2)求的值;
(3)若三位自然数(即的百位数字是,十位数字是,个位数字是,,,,是整数,)为“三峡数”,且时,求满足条件的所有三位自然数.
5、(1)解方程:;
(2)解方程组:
-参考答案-
一、单选题
1、B
【解析】
【分析】
设购买笔记本本,购买笔记本本,先建立二元一次方程,再根据均为正整数进行分析即可得.
【详解】
解:设购买笔记本本,购买笔记本本,
由题意得:,即,
因为均为正整数,
所以有以下三种购买方案:
①当,时,,
②当,时,,
③当,时,,
故选:B.
【点睛】
本题考查了二元一次方程的应用,正确建立方程是解题关键.
2、A
【解析】
【分析】
将代入方程x-ay=3计算可求解a值.
【详解】
解:将代入方程x-ay=3得2-a=3,
解得a=-1,
故选:A.
【点睛】
本题主要考查二元一次方程的解,理解二元一次方程解的概念是解题的关键.
3、B
【解析】
【分析】
先求出的解,然后代入可求出a的值.
【详解】
解:,
由①+②,可得2x=4a,
∴x=2a,
将x=2a代入①,得
2a-y=a,
∴y=2a﹣a=a,
∵二元一次方程组的解是二元一次方程的一个解,
∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,
∴a=7,
故选B.
【点睛】
本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.
4、A
【解析】
【分析】
把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.
【详解】
解:把x=1代入方程组,可得,解得y=2,
将y=2代入1+my=0中,得m=,
故选:A.
【点睛】
此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.
5、A
【解析】
【分析】
含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.
【详解】
解:①x+y=6是二元一次方程;
②x(x+y)=2,即不是二元一次方程;
③3x-y=z+1是三元一次方程;
④m+=7不是二元一次方程;
故符合题意的有:①,
故选A
【点睛】
本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.
6、A
【解析】
【分析】
设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.
【详解】
解:设购买50元和25元的两种换气扇的数量分别为x,y
由题意得:,即,
∵x、y都是正整数,
∴当x=1时,y=6,
当x=2时,y=4,当x=3时,y=2,
∴一共有3种方案,
故选A.
【点睛】
本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.
7、C
【解析】
【分析】
设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2018根火柴棍,并且三角形的个数比正六边形的个数多7个,列方程组求解即可.
【详解】
解:设连续搭建等边三角形x个,连续搭建正六边形y个,
由题意,得,
解得.
故选C.
【点睛】
本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.
8、B
【解析】
【分析】
设租A型车x辆,租B型车y辆,根据题意列方程得,正整数解即可.
【详解】
解:设租A型车x辆,租B型车y辆,
根据题意列方程得,
∴,
∵均为正整数,
∴是4的倍数,小于31的4的倍数有28,24,20,16,12,8,4,
∴=28,解得x=1,,
∴=24,解得,,
∴=20,解得,
∴=16,解得x=5,,
∴=12,解得,
∴=8,解得,
∴=4,解得x=9,,
∴租车方案有三种分别为:租A型车1辆,租B型车7辆或租A型车5辆,租B型车4辆或租A型车9辆,租B型车1辆.
故选择B.
【点睛】
本题考查二元一次方程的正整数解,掌握应用二元一次方程解应用题,利用二元一次方程的正整数解解决方案设计问题是解题关键.
9、A
【解析】
【分析】
先将关于的方程组变形为,再根据关于的方程组的解可得,由此即可得出答案.
【详解】
解:关于的方程组可变形为,
由题意得:,
解得,
故选:A.
【点睛】
本题考查了求二元一次方程组的解,正确发现两个方程组之间的联系是解题关键.
10、A
【解析】
【分析】
把代入5x+3y=1即可求出m的值.
【详解】
把代入5x+3y=1,得
10+3m=1,
∴m=-3,
故选A.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
二、填空题
1、##
【解析】
【分析】
根据绝对值和平方的非负性,列出方程组,可得,再代入,即可求解.
【详解】
解:∵,
∴ ,
解得: ,
.
故答案为:
【点睛】
本题主要考查了绝对值和平方的非负性,二元一次方程组的应用,求代数式的值,根据绝对值和平方的非负性,列出方程组是解题的关键.
2、
【解析】
【分析】
②×3-①求出x的值,再把x的值代入②求出y的值即可.
【详解】
解:
②×3-①,得5x=28
∴x=
把x=代入②得,
∴
∴方程组的解为
故答案为:
【点睛】
本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.
3、5
【解析】
【分析】
两个单项式,所含的字母相同,相同字母的指数也相同,则称这两个单项式是同类项,据此转化为解二元一次方程组,解得,再将其代入多项式中计算即可.
【详解】
解:∵与的和是单项式,
∴与是同类项,
∴,
解得:.
∴.
故答案为:5.
【点睛】
本题考查同类项的定义,合并同类项,涉及简单二元一次方程组解法,代数式求值,是基础考点,难度较易,掌握相关知识是解题关键.
4、13:30
【解析】
【分析】
设1克芝麻成本价m元,1克核桃成本价n元,根据“花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%”列出方程得到m+n=0.18,进而算出甲乙两款袋装营养早餐的成本价,再根据“甲每袋袋装营养早餐的售价为2.6元,利润率为30%,乙种袋装营养早餐每袋利润率为20%.若公司销售这种混合装的袋装营养早餐总利润率为24%”列出方程即可得到甲、乙两种袋装营养早餐的数量之比.
【详解】
解:设1克芝麻成本价m元,1克核桃成本价n元,根据题意得:
(10×0.02+10m+10n)×(1+30%)=2.6,
解得m+n=0.18,
则甲种干果的成本价为10×0.02+10m+10n=2(元),
乙种干果的成本价为20×0.02+5m+5n=0.4+5×0.18=1.3(元),
设甲种干果x袋,乙种干果y袋,根据题意得:
2x×30%+1.3y×20%=(2x+1.3y)×24%,
解得,,即甲、乙两种袋装袋装营养早餐的数量之比是13:30.
故答案为:13:30.
【点睛】
本题考查二元一次方程的应用,解题的关键是找出等量关系列出方程.
5、 消元 化为 二元一次方程组 一元一次方程
【解析】
【分析】
利用解三元一次方程组的基本思想-消元的思想,判断即可得到结果.
【详解】
解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.
故答案为:消元;化为;二元一次方程组;一元一次方程
【点睛】
此题考查了解三元一次方程组的思路,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
三、解答题
1、 (1)
(2)
【解析】
【分析】
用代入消元法或加减消元法解二元一次方程即可.
(1)
原方程可转化为,
由①,得③,
把③代入②,得,
把代入①,得,
故原方程组的解为.
(2)
原方程组可转化为,
由①×4+②×5得:,解得,
把代入②式得:,故原方程组的解为.
【点睛】
本题考查了解二元一次方程组,把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代人消元法,简称代入法.当二元一次方程组的两个方程中间一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.
2、
【解析】
【详解】
解:,
用②①,得:,
解得:,
将代入①,得:,
解得:,
方程组的解为.
【点睛】
此题考查了解二元一次方程组,正确掌握解方程组的方法:代入法和加减法并应用解决问题是解题的关键.
3、 (1)6423是“2倍和数”, 4816不是“2倍和数”,理由见解析;
(2)最大值是3117,最小值是1107.
【解析】
【分析】
(1)根据定义进行判断即可
(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,进而求得的各数位上的数字之和,根据,可得能被3整除,进而求二元一次方程的整数解即可,进而列出,即可求得的最大值和最小值.
(1)
,
∴6423是“2倍和数”,
,
∴4816不是“2倍和数”;
(2)
设的个位上的数字为,十位上的数字为,则百位上的数字为,
千位上的数字为,
,,,,为整数),
的各数位上的数字之和为,
各数位上的数字之和能被9整除,
能被3整除,
或,
,
,
,
的最大值是3117,最小值是1107.
【点睛】
本题考查了新定义,求二元一次方程的整数解,整除,理解新定义是解题的关键.
4、 (1)341是“三峡数”,153不是“三峡数”,理由见解析
(2)
(3)所有满足条件的是671、792
【解析】
【分析】
(1)根据三峡数的定义分析即可;
(2)根据计算;
(3)根据列出关于a、b的二元一次方程,然后根据,求解;
(1)
341是“三峡数”,∵,∴341是“三峡数”;
153不是“三峡数”,∵,∴153不是“三峡数”;
(2)
;
(3)
由题知(,,,是整数),
则,
∴,
,
则(,,,是整数),
,,
,
答:所有满足条件的是671、792.
【点睛】
本题考查了新定义,以及解二元一次方程,正确理解“三峡数”的定义是解答本题的关键.
5、(1) ;(2)
【解析】
【分析】
(1)先去分母,再去括号,然后移项合并同类项,即可求解;
(2)由①+②×2可得 ,再代入②,即可求解.
【详解】
解:
去分母得: ,
去括号得: ,
移项合并同类项得: ,
解得: ;
(2)
由①+②×2得: ,
解得: ,
把代入②得: ,
解得: ,
∴原方程组的解为 .
【点睛】
本题主要考查了解一元一次方程和解二元一次方程组,熟练掌握一元一次方程和二元一次方程组的解法是解题的关键.
冀教版七年级下册第六章 二元一次方程组综合与测试课堂检测: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课堂检测,共17页。
数学七年级下册第六章 二元一次方程组综合与测试巩固练习: 这是一份数学七年级下册第六章 二元一次方程组综合与测试巩固练习,共19页。试卷主要包含了有下列方程组,有下列方程等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试课后测评: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共17页。试卷主要包含了在一次爱心捐助活动中,八年级,已知是二元一次方程,则的值为,已知x,y满足,则x-y的值为等内容,欢迎下载使用。