冀教版七年级下册第七章 相交线与平行线综合与测试课时作业
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课时作业,共21页。试卷主要包含了如图,一定能推出的条件是,如图,直线b等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,直线AB和CD相交于点O,下列选项中与∠AOC互为邻补角的是( )A.∠BOC B.∠BOD C.∠DOE D.∠AOE2、如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EFHC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①ADBC;②GK平分∠AGC;③∠DGH=37°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有( )A.4个 B.3个 C.2个 D.1个3、下列各图中,和是对顶角的是( )A. B.C. D.4、北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的(如图).下面四个图案中,可以通过平移图案得到的是( )A. B. C. D.5、如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )A.15° B.20° C.25° D.30°6、如图,∠1=∠2,则下列结论正确的是( )A.AD∥BC B.AB∥CDC.AD∥EF D.EF∥BC7、如图,一定能推出的条件是( )A. B. C. D.8、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )A.两点之间,线段最短B.两点之间,直线最短C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短9、如图,直线b、c被直线a所截,则与是( )A.对顶角 B.同位角 C.内错角 D.同旁内角10、如图,于O,直线CD经过O,,则的度数是( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线a∥b,A是直线a上的任意一点,AB⊥b,B是垂足,线段________的长就是a、b之间的距离.2、如图,当直线AB与CD相交于O点,∠AOD=______时,那么AB与CD垂直,记作:AB______CD.符号语言:因为∠AOD=90°(已知) ,所以AB⊥CD( ) .3、两条平行直线被第三条直线所截,同位角相等.简称:两直线平行,同位角_________.如图,因为a∥b,(已知)所以∠1=_________.(两直线平行,同位角相等)4、如图,直线mn.若,,则的大小为_____度.5、如图,从人行横道线上的点P处过马路,下列线路中最短的是线路________,理由是________.三、解答题(5小题,每小题10分,共计50分)1、如图,方格纸中每个小正方形的边长都是1.(1)过点P画,PM与直线AB相交于点M;(2)若点N在图中的格点上(不与点A重合),且直线NA与直线AC垂直,这样的格点(图中)有______个;(3)连接PB、PC,则四边形PBAC的面积是______.2、如图,已知,平分,平分,求证.证明:∵平分(已知),∴ ( ),同理 ,∴ ,又∵(已知)∴ ( ),∴.3、如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.4、如图,已知AEBF,AC⊥AE,BD⊥BF,AC与BD平行吗?补全下面的解答过程(理由或数学式).解:∵AEBF,∴∠EAB= .( )∵AC⊥AE,BD⊥BF,∴∠EAC=90°,∠FBD=90°.∴∠EAC=∠FBD( )∴∠EAB﹣ =∠FBG﹣ ,即∠1=∠2.∴ ( ).5、如图,已知于点,于点,,试说明.解:因为(已知),所以( ).同理.所以( ).即.因为(已知),所以( ).所以( ). -参考答案-一、单选题1、A【解析】【详解】解:图中与互为邻补角的是和,故选:A.【点睛】本题考查了邻补角,熟练掌握邻补角的定义(两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角)是解题关键.2、B【解析】【分析】根据平行线的判定定理得到AD∥BC,故①正确;由平行线的性质得到∠AGK=∠CKG,等量代换得到∠AGK=∠CGK,求得GK平分∠AGC;故②正确;根据题意列方程得到∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,得到∠AGK=α+β,根据角平分线的定义即可得到结论.【详解】解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;∵∠FGA的余角比∠DGH大16°,∴90°-∠FGA-∠DGH=16°,∵∠FGA=∠DGH,∴90°-2∠FGA=16°,∴∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,∴∠AGK=α+β,∵GK平分∠AGC,∴∠CGK=∠AGK=α+β,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+α=β+α+β,∴β=18.5°,∴∠MGK=18.5°,故④错误,故选:B.【点睛】本题考查了平行线的判定和性质,角平分线的定义,对顶角性质,一元一次方程,正确的识别图形是解题的关键.3、D【解析】【分析】由题意根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:根据对顶角的定义:中和顶点不在同一位置,不是对顶角;中和角度不同,不是对顶角;中和顶点不在同一位置,不是对顶角;中和是对顶角;故选:.【点睛】此题主要考查了对顶角,正确把握对顶角的定义是解题关键.4、A【解析】【分析】根据平移只改变图形的位置不改变图形的形状和大小解答.【详解】解:能通过平移得到的是A选项图案.故选:A【点睛】本题考查了利用平移设计图案,熟记平移变换只改变图形的位置不改变图形的形状并准确识图是解题的关键.5、B【解析】【分析】若使直线b与直线c平行,则∠1=180°-∠2=140°,还差20°,故旋转20°.【详解】解: ∵∠1=120°,∴∠3=180°-120°=60°.∵∠2=40°,∴要使b∥c,则∠2=∠3,∴直线b绕点A逆时针旋转60°-40°=20°.故选B.【点睛】本题考查直线与平行线相交的性质,掌握这些性质是本题关键.6、C【解析】略7、D【解析】【分析】平行线的判定方法有:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行;根据平行线的判定方法逐一判定即可.【详解】解:A.和是直线和被直线所截所成的内错角,不能推出,故本选项不符合题意;B.和是直线和被直线所截所成的内错角,不能推出,故本选项不符合题意;C.和是直线和被直线所截所成的内错角,但不能判定,不能判定,和是直线和被直线所截所成的同位角,但不能判定,不能判定,不能推出,故本选项不符合题意;D.和是直线和被直线所截所成的同位角,能推出,故本选项符合题意;故选:D.【点睛】本题主要考查了平行线的判定,熟记同位角相等,两直线平行是解决问题的关键.8、D【解析】【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.9、B【解析】【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.10、B【解析】【分析】由OA⊥OB,得出∠AOB=90°,再根据∠AOD=35°,由余角的定义可得出∠BOD,再根据补角的定义可得出∠BOC的度数.【详解】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOD=35°,∴∠BOD=90°-35°=55°,∴∠BOC=180-55°=125°,故选B.【点睛】本题考查了垂线的定义,平角的定义,关键是利用90°和180°的数据进行计算.二、填空题1、AB【解析】略2、 90° ⊥ 垂直的定义【解析】略3、 相等 ∠2【解析】略4、70【解析】【分析】如图(见解析),过点作,再根据平行线的性质可得,然后根据角的和差即可得.【详解】解:如图,过点作,,,,,,故答案为:70.【点睛】本题考查了平行线的性质与推论,熟练掌握平行线的性质是解题关键.5、 PC 垂线段最短【解析】【分析】根据点到直线的距离,垂线段最短进行求解即可.【详解】解:∵点到直线的距离,垂线段最短,∴从人行横道线上的点P处过马路,线路最短的是PC,故答案为:PC.【点睛】本题主要考查了点到直线的距离,解题的关键在于能够熟练掌握点到直线的距离垂线段最短.三、解答题1、(1)见解析;(2)3个;(3)10.5【解析】【分析】(1)直接利用网格结合平行线的判定方法得出答案;(2)利用数形结合的思想画出图形即可;(3)利用四边形PBAC所在矩形减去周围三角形面积得出答案.【详解】解:(1)如图所示:(2)这样的格点N共有3个,如图所示,故答案为:3.(3)四边形PBAC的面积为:3×7-×1×2-×5×2-×1×5-×2×2=10.5.【点睛】本题主要考查了应用设计与作图,正确借助网格分析是解题关键.2、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【解析】【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=∠ABC(角平分线的定义),同理∠1=∠BCD,∴∠1+∠2=(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°.故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.3、(1)见解析;(2)34°【解析】【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,∴∠ENC+∠FMN=180°,∴FG∥ED,∴∠2=∠D,∵AB∥CD,∴∠3=∠D,∴∠2=∠3;(2)解:∵AB∥CD,∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,∵AB∥CD,∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.4、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBD;AC;BD;同位角相等,两直线平行【解析】【分析】由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.【详解】∵AE∥BF,∴∠EAB=∠FBG(两直线平行,同位角相等).∵AC⊥AE,BD⊥BF,∴∠EAC=90°,∠FBD=90°.∴∠EAC=∠FBD(等量代换),∴∠EAB﹣∠EAC=∠FBG﹣∠FBD,即∠1=∠2.∴AC∥BD(同位角相等,两直线平行).故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBD;AC,BD,同位角相等,两直线平行.【点睛】本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.5、垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行【解析】【分析】根据垂直定义得出,求出,根据平行线的判定推出即可.【详解】解:因为(已知),所以(垂直的定义),同理.所以(等量代换),即.因为(已知),所以(等式的性质,所以(内错角相等,两直线平行).故答案为:垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行【点睛】本题考查了垂直定义和平行线的判定的应用,熟练掌握平行线的判定是解题关键.
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题,共23页。试卷主要包含了如图,直线AB∥CD,直线AB,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共22页。试卷主要包含了如图,直线a,下列说法中不正确的是,下列说法正确的有等内容,欢迎下载使用。
这是一份2020-2021学年第七章 相交线与平行线综合与测试复习练习题,共21页。试卷主要包含了下列各图中,和是对顶角的是,有下列说法,下列命题中,为真命题的是,下列命题不正确的是等内容,欢迎下载使用。