![2021-2022学年冀教版七年级下册第七章相交线与平行线专题测评试题(含详细解析)01](http://img-preview.51jiaoxi.com/2/3/12717360/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级下册第七章相交线与平行线专题测评试题(含详细解析)02](http://img-preview.51jiaoxi.com/2/3/12717360/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级下册第七章相交线与平行线专题测评试题(含详细解析)03](http://img-preview.51jiaoxi.com/2/3/12717360/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第七章 相交线与平行线综合与测试巩固练习
展开冀教版七年级下册第七章相交线与平行线专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,已知∠1=50°,要使a∥b,那么∠2等于( )
A.40° B.130° C.50° D.120°
2、如图,l1∥l2,l3∥l4,与∠α互补的是( )
A.∠1 B.∠2 C.∠3 D.∠4
3、下列命题不正确的是( )
A.直角三角形的两个锐角互补 B.两点确定一条直线
C.两点之间线段最短 D.三角形内角和为180°
4、一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )
A.第一次向右拐 50° ,第二次向左拐130° B.第一次向右拐 50° ,第二次向右拐130°
C.第一次向左拐 50° ,第二次向左拐130° D.第一次向左拐 30° ,第二次向右拐 30°
5、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
6、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )
A.140° B.100° C.80° D.40°
7、北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的(如图).下面四个图案中,可以通过平移图案得到的是( )
A. B. C. D.
8、下列命题中,为真命题的是( )
A.若,则 B.若,则
C.同位角相等 D.对顶角相等
9、如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )
A.15° B.20° C.25° D.30°
10、如图,直线AB和CD相交于点O,下列选项中与∠AOC互为邻补角的是( )
A.∠BOC B.∠BOD C.∠DOE D.∠AOE
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AC平分∠DAB,∠1=∠2,试说明.
证明:∵AC平分∠DAB( ),
∴∠1=∠______( ),
又∵∠1=∠2( ),
∴∠2=∠______( ),
∴AB______( ).
2、如图,如果______,那么.
3、如图A,C,E共线,请你添加一个条件,使ABCD,这个条件是______,你的依据是_____.
4、如图所示方式摆放纸杯测量角的基本原理是 _____.
5、如图,已知AD∥CE,∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠AFC的余角等于2∠ABC的补角,则∠BAH的度数是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知AE平分∠BAC交BC于点E,AF平分∠CAD交BC的延长线于点F,∠B=64°,∠EAF=58°,试判断AD与BC是否平行.
解:∵AE平分∠BAC,AF平分∠CAD(已知),
∴∠BAC=2∠1,∠CAD= ( ).
又∵∠EAF=∠1+∠2=58°,
∴∠BAD=∠BAC+∠CAD
=2(∠1+∠2)
= °(等式性质).
又∵∠B=64°(已知),
∴∠BAD+∠B= °.
∴ ( ).
2、已知:如图,,,.求证:平分.
3、如图,已知∠ADC=∠ABC,DE、BF分别平分∠ADC和∠ABC,且DE∥BF,那么AB与DC平行吗?为什么?
4、如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程.
(1)∵∠1=∠2(已知)
∴ CD( )
∴∠ABD+∠CDB = ( )
(2)∵∠BAC =65°,∠ACD=115°,( 已知 )
∴∠BAC+∠ACD=180° (等式性质)
∴ABCD ( )
(3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)
∴∠ABD=∠CDF=90°( 垂直的定义)
∴ (同位角相等,两直线平行)
又∵∠BAC=55°,(已知)
∴∠ACD = ( )
5、如图,,,,,与相交于点.
(1)求证:;
(2)求的度数.
-参考答案-
一、单选题
1、C
【解析】
【分析】
先假设a∥b,由平行线的性质即可得出∠2的值.
【详解】
解:假设a∥b,
∴∠1=∠2,
∵∠1=50°,
∴∠2=50°.
故选:C.
【点睛】
本题考查的是平行线的判定定理,即同位角相等,两直线平行.
2、D
【解析】
【分析】
如图,先证明再证明 可得 再利用邻补角的定义可得答案.
【详解】
解:如图,
所以与∠α互补的是
故选D
【点睛】
本题考查的是平行线的性质,邻补角的定义,掌握“两直线平行,同位角相等”是解本题的关键.
3、A
【解析】
【分析】
根据直角三角形两锐角互余可直接进行判断.
【详解】
解:A、直角三角形的两个锐角互补,是假命题,符合题意;
B、两点确定一条直线,是真命题,不符合题意;
C、两点之间线段最短,是真命题,不符合题意;
D、三角形内角和为,是真命题,不符合题意;
故选A.
【点睛】
本题考查了假命题的判断,解题的关键是熟练掌握直角三角形两锐角互余.
4、D
【解析】
【分析】
根据题意可得两直线平行则同位角相等,据此分析判断即可.
【详解】
解:∵两次拐弯后,按原来的相反方向前进,
∴两次拐弯的方向相同,形成的角是同位角,
故答案为:D
【点睛】
本题考查了平行线的性质,掌握平行线的性质是解题的关键.
5、A
【解析】
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
6、B
【解析】
【分析】
根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
【详解】
解:∵∠AOE+∠BOE=180°,
∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
又∵OE平分∠AOC,
∴∠AOE=∠COE=40°,
∴∠BOC=∠BOE﹣∠COE
=140°﹣40°
=100°,
故选:B.
【点睛】
本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
7、A
【解析】
【分析】
根据平移只改变图形的位置不改变图形的形状和大小解答.
【详解】
解:能通过平移得到的是A选项图案.
故选:A
【点睛】
本题考查了利用平移设计图案,熟记平移变换只改变图形的位置不改变图形的形状并准确识图是解题的关键.
8、D
【解析】
【分析】
利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
【详解】
解:A、若,则或,故A错误.
B、当时,有,故B错误.
C、两直线平行,同位角相等,故C错误.
D、对顶角相等,D正确.
故选:D .
【点睛】
本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
9、B
【解析】
【分析】
若使直线b与直线c平行,则∠1=180°-∠2=140°,还差20°,故旋转20°.
【详解】
解:
∵∠1=120°,
∴∠3=180°-120°=60°.
∵∠2=40°,
∴要使b∥c,则∠2=∠3,
∴直线b绕点A逆时针旋转60°-40°=20°.
故选B.
【点睛】
本题考查直线与平行线相交的性质,掌握这些性质是本题关键.
10、A
【解析】
【详解】
解:图中与互为邻补角的是和,
故选:A.
【点睛】
本题考查了邻补角,熟练掌握邻补角的定义(两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角)是解题关键.
二、填空题
1、 已知 3 角平分线的定义 已知 3 等量代换 CD 内错角相等,两直线平行
【解析】
【分析】
根据平行线证明对书写过程的要求和格式填写即可.
【详解】
证明:∵AC平分∠DAB(已知),
∴∠1=∠ 3 (角平分线的定义),
又∵∠1=∠2(已知),
∴∠2=∠ 3 (等量代换),
∴AB∥CD (内错角相等,两直线平行).
故答案为:已知;3;角平分线的定义;已知;3;等量代换;CD;内错角相等,两直线平行
【点睛】
本题主要考查平行线证明的书写,正确的逻辑推理和书写格式是解题的关键.
2、##∠ABC##∠CBA
【解析】
【分析】
根据平行线的判定定理即可得到结论.
【详解】
解:,
.
故答案为.
【点睛】
本题考查了平行线的判定定理,熟练掌握同旁内角互补两直线平行是解题的关键.
3、 ∠ECD=∠A 同位角相等,两直线平行(答案不唯一)
【解析】
【分析】
根据平行线的判定定理添加即可.
【详解】
解:∵∠ECD=∠A,
∴AB∥CD(同位角相等,两直线平行)
故答案为:∠ECD=∠A;同位角相等,两直线平行(答案不唯一).
【点睛】
本题考查了平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.
4、对顶角相等
【解析】
【分析】
利用对顶角的定义进行求解即可.
【详解】
图中的测量角的原理是:对顶角相等.
故答案为:对顶角相等.
【点睛】
本题考查了对顶角,解题的关键是理解清楚对顶角的定义.
5、60°##60度
【解析】
【分析】
设∠BAF=x°,∠BCF=y°,由题意知∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,如图,过点B作BM∥AD,过点F作FN∥AD,由AD∥CE可得AD∥FN∥BM∥CE,有∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,ABM=∠BAH=2x°,∠CBM=∠GCB=y°,∠AFC=(x+2y)°,∠ABC=(2x+y)°由于∠F的余角等于2∠B的补角,可知90﹣(x+2y)=180﹣2(2x+y),进行求解可得x的值,进而可求出∠BAH的值.
【详解】
解:设∠BAF=x°,∠BCF=y°
∵∠BCF=∠BCG,CF与∠BAH的平分线交于点F
∴∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,
如图,过点B作BM∥AD,过点F作FN∥AD
∵AD∥CE
∴AD∥FN∥BM∥CE
∴∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,∠ABM=∠BAH=2x°,∠CBM=∠GCB=y°
∴∠AFC=(x+2y)°,∠ABC=(2x+y)°
∵∠AFC的余角等于2∠ABC的补角
∴90﹣(x+2y)=180﹣2(2x+y)
解得:x=30
∴∠BAH=60°
故答案为:60°.
【点睛】
本题考查了角平分线,平行线的性质,余角、补角等知识.解题的关键在于正确的表示角度之间的数量关系.
三、解答题
1、2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行
【解析】
【分析】
由AE平分∠BAC,AF平分∠CAD,利用角平分线的定义可得出∠BAC=2∠1,∠CAD=2∠2,结合∠EAF=∠1+∠2=58°可得出∠BAD=116°,由∠B=64°,∠BAD=116°,可得出∠BAD+∠B=180°,再利用“同旁内角互补,两直线平行”即可得出AD∥BC.
【详解】
解:∵AE平分∠BAC,AF平分∠CAD(已知),
∴∠BAC=2∠1,∠CAD=2∠2(角平分线的定义).
又∵∠EAF=∠1+∠2=58°,
∴∠BAD=∠BAC+∠CAD
=2(∠1+∠2)
=116°(等式性质).
又∵∠B=64°(已知),
∴∠BAD+∠B=180°.
∴AD∥BC(同旁内角互补,两直线平行).
故答案为:2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行.
【点睛】
此题考查了角平分线的定义,角的计算,平行线的判定.正确掌握线段、角、相交线与平行线的知识是解题的关键,还需掌握推理能力.
2、见解析
【解析】
【分析】
先判定EF//AC,得到,,等量代换可得∠2=∠3,从而平分.
【详解】
证明:,,
,
,,
又,
∴∠3=∠A,
,
平分.
【点睛】
本题考查了平行线的判定与性质,角平分线的定义,熟练掌握平行线的判定与性质是解答本题的关键.
3、AB∥DC,理由见解析.
【解析】
【分析】
根据平行线的性质推出∠DEA=∠FBA,再根据角平分线性质推出∠CDE=∠FBA,等量代换得到∠CDE=∠DEA,根据平行线的判定推出即可.
【详解】
解:AB∥DC,理由如下:
∵DE∥BF,
∴∠DEA=∠FBA,
∵∠ADC=∠ABC,DE、BF分别平分∠ADC和∠ABC,
∴∠CDE=∠CDA=∠CBA=∠FBA=∠DEA,
∴AB∥DC.
【点睛】
本题主要考查对平行线的性质和判定,角平分线性质等知识点的理解和掌握,能推出∠CDE=∠DEA是解此题的关键.
4、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.
【解析】
【分析】
(1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;
(2)由题意直接依据同旁内角互补,两直线平行进行分析即可;
(3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.
【详解】
解:(1)∵∠1=∠2 (已知)
∴AB∥CD(内错角相等,两直线平行)
∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)
故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;
(2)∵∠BAC =65°,∠ACD=115°,(已知)
∴∠BAC+∠ACD=180° (等式性质 )
∴AB∥CD (同旁内角互补,两直线平行)
故答案为:同旁内角互补,两直线平行;
(3)∵CD⊥AB于D,EF⊥AB于F ,∠BAC=55°,(已知)
∴∠ABD=∠CDF=90°(垂直的定义)
∴AB ∥CD(同位角相等,两直线平行)
又∵∠BAC=55°,(已知)
∴∠ACD = 125°.(两直线平行,同旁内角互补)
故答案为:AB;CD;125°;两直线平行,同旁内角互补.
【点睛】
本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.
5、 (1)见解析
(2)54°
【解析】
【分析】
(1)由平行线的性质可得,等量代换可得,从而,然后根据根据平行线的传递性可证结论成立;
(2)过点G作GM∥AB,由平行线的性质可得∠DCG=∠CGM,再由已知条件及角的和差关系可得答案.
(1)
证明:,
,
,,
∴,
,
,
.
(2)
解:如图,过点作,
,
由(1)知,,
,
,
,,
,,
,
,
,即.
【点睛】
本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
初中冀教版第七章 相交线与平行线综合与测试巩固练习: 这是一份初中冀教版第七章 相交线与平行线综合与测试巩固练习,共25页。试卷主要包含了如图,点P是直线m外一点,A,下列说法中正确的有等内容,欢迎下载使用。
数学七年级下册第七章 相交线与平行线综合与测试课堂检测: 这是一份数学七年级下册第七章 相交线与平行线综合与测试课堂检测,共25页。试卷主要包含了生活中常见的探照灯,如图,一定能推出的条件是等内容,欢迎下载使用。
初中第七章 相交线与平行线综合与测试巩固练习: 这是一份初中第七章 相交线与平行线综合与测试巩固练习,共23页。试卷主要包含了下列命题中是假命题的是,如图所示,直线l1∥l2,点A,下列说法中,错误的是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。